существование точных верхних и нижних граней у любого ограниченного множества
не у любого, а только у НЕПУСТОГО!
Да, конечно.
существования предельных точек у бесконечных множеств
А какие предельные точки есть у множества натуральных чисел? Или оно - конечное?
А здесь подразумевалась ограниченность множества (если, впрочем, плюс и минус бесконечности тоже не считать возможными "предельными точками"), как и в формулировке про точные верхние и нижние грани (где если совсем строго, конечно, то ограниченность сверху для верхней грани и снизу для нижней грани). Я выразил общие впечатления, но надо, конечно, более аккуратно выражаться даже в таких случаях.
-- 18.04.2017, 14:18 --ело еще и в том, что именно из этой аксиомы следует (и равносильно ей) существование точных верхних и нижних граней у любого ограниченного множества + эквивалентные формулировки типа существования общей точки у стягивающейся системы отрезков, существования предельных точек у бесконечных множеств, сходимость фундаментальных последовательностей. В результате, аксиома о полноте, по-сути, это наиболее важное понятие начального курса анализа, из которого потом выводятся
Да дело не в том, что они "выводятся". А в том, что они абсолютно необходимы для дальнейшей комфортной работы. И в первую очередь -- необходима полнота в смысле сходимости фундаментальных последовательностей.
Вроде я именно это и написал про дальнейшую комфортную работу. А полнота в смысле сходимости фундаментальных последовательностей это просто одна из эквивалентных формулировок этой аксиомы в случае поля вещественных чисел.
И в этом смысле канторов подход наиболее идеен (не говорю уж о том, что он потом оказался наиболее универсальным).
С этим я не спорю. Дедекиндовы сечения, конечно, возможны только для линейно упорядоченных полей, типа поля рациональных чисел. Пополнение через фундаментальные последовательности более универсально. Но как говорил Фейнман, хороший физик знает 6-7 эквивалентных формулировок для любой теории. Думаю это полезно и в математике.