2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему
 
 ВТФ-3. Школьная ошибка Эйлера
Сообщение10.12.2016, 22:58 


18/11/16
6
Рассмотрим вкратце основные этапы доказательства ВТФ-3, базируясь на источниках:
1."Великая теорема Ферма", А.Я.Хинчин, издат.ЛКИ, издание 3-е, 2007.
2."Последняя теорема Ферма", П.Рибенбойм, издат."Мир", 2003.
3."Исследования по теории чисел и диофантову анализу", П.Ферма, издат.ЛКИ, 2007, (док-во Эйлера-Вейля с комментариями И.Г.Башмаковой и Т.А.Лавриненко, стр.251-254).

Попробуем изложить эти этапы "школьными" рассуждениями, доступными широкому кругу любителей математики.
Пусть (a,b,c) - тройка взаимно простых (попарно) натуральных чисел, связанных соотношением $a^3 + b^3 = c^3$, и чётным в этой связке является число а. Тогда возьмём соотношение $a^3 = (c-b)(c^2 +cb + b^2)$, для которого далее рассматриваем два случая: в первом число а не делится на 3, во втором делится. При этом неполный квадрат нечётных чисел b и c представляем в виде целочисленной квадратичной формы $(\frac{c-b}{2})^2 +  3(\frac{c+b}{2})^2$, то есть в виде $U^2 +3V^2$, где U и V - взаимно простые разночётные натуральные числа (в данной форме U - чётное, V - нечётное), причём U не делится на 3.

В первом случае числа $c-b$ и $c^2 + cb + b^2$ - взаимно простые и являются кубами. Тогда неполный квадрат должен быть кубом аналогичной первоначальной квадратичной формы $u^2 + 3v^2$, в которой число u не делится на 3, и результатом возведения которой в куб должна стать форма $U^2 + 3V^2$, имеющая конструкцию:

$(u(u^2 - 9v^2))^2 + 3(v(3u^2 - 3v^2))^2$. А далее гениальный Эйлер делает нечто невероятное, показывая нам изумительную "одежду голого короля", - он "работает" только с первой частью U конструкции формы, получая ВТФ-3 для других чисел (и метод спуска), но "забывает" про вторую часть V этой же конструкции. Число V обязано делиться на 3, но оно не делится, - так как если a не делится на 3, то должно делиться на 3 или b, или c, - поэтому число $c+b$ делиться на 3 не может, и поэтому полученная конструкция формы в данном случае не может являться кубом аналогичной целочисленной формы. Так что случай неделимости на 3 чётного числа из связки натуральных чисел (a,b,c) невозможен.

Между тем тот факт, что в ВТФ-3 одно из трёх чисел обязано делиться на 3, известен давно. Простейшее доказательство этого - "от противного": $(3a_0 \pm 1)^3 + (3b_0 \pm 1)^3 = (3c_0 \pm 1)^3$ , из чего следует $9A \pm 1 + 9B \pm 1 = 9C \pm 1$ , и здесь никакая комбинация знаков трёх единиц не даст деления на 9.

Второй случай рассмотрим "по Эйлеру", но с нашей "модификацией". Пусть чётное число a среди своих простых множителей содержит k троек. Тогда $c - b = 3^{3k-1}z^3$ , $c^2 + cb + b^2 = 3h^3$ , $a = 3^{k}zh$ , где z - чётное, h - нечётное, и троек они не содержат. Для неполного квадрата после сокращения на 3 в его выражении квадратичной формой получаем $(\frac{c+b}{2})^2 + 3(\frac{c-b}{6})^2 = h^3$. После подстановки $h^3 = U^2 +3V^2$, где $h = u^2 + 3v^2$, и "работая" далее с частью V конструкции формы, получим соотношение $(3^{3k-2}z^3)^2 = 4(v(3u^2 - 3v^2))^2$; отсюда имеем: $3^{3k-3}z^3 = 2v(u+v)|u-v|$, из чего следует: $u+v=x^3_{odd}$ , $|u-v|=y^3_{odd}$ , $2v=3^{3k-3}t^3_{even}$ , $z=t_{even}x_{odd}y_{odd}$ , где even - чётное, odd - нечётное, t,x,y - натуральные, взаимно простые (попарно), и троек они не содержат. В результате получаем ВТФ-3 для новой связки чисел: $x^3_{odd}\pm y^3_{odd}=(3^{k-1}t_{even})^3$. Заметим, что в новой связке чётное число имеет среди своих простых множителей на одну тройку меньше, чем в предыдущей связке, - получается такой вид "спуска".

Где-то в литературе имеется утверждение (кажется, у П.Рибенбойма, - но без док-ва) для ВТФ в общем виде: если одно из связки чисел делится на показатель степени p, то оно делится на $p^2$. Мы можем это доказать, а также для ВТФ-3 доказать делимость одного из чисел на 27 (это сложнее, чем на 9) и даже на 81 (это ещё сложнее), но здесь и сейчас в этом нет необходимости. В нашем случае "спуска" по количеству троек в одном из чисел связки мы придём к необходимости перехода к нулевому или иррациональному варианту одного из чисел очередной связки, из которого обратный переход к связкам с натуральными числами будет невозможен.

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение13.12.2016, 20:53 


21/11/10
546
leonid filiforsnik в сообщении #1175788 писал(а):
Тогда $c - b = 3^{3k-1}z^3$ , $c^2 + cb + b^2 = 3h^3$ , $a = 3^{k}zh$ , где z - чётное, h - нечётное, и троек они не содержат.

Уважаемый leonid filiforsnik!
Если Вы утверждаете, что $a$ содержит $k$ троек то почему не упоминаете о других раскаладах тройки в произведении:
$ (c-b)((c-b)^2+3cb)$
что изменится если:
$c-b=3^{3k-m}z^3$ и $(c-b)^2+3cb=3^mh^3$

Может быть ещё не пришла пора нам замахиваться на Леонарда нашего Эйлера? :-)

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение14.12.2016, 03:03 


18/11/16
6
Уважаемый ishhan!
Я не утверждаю, а предполагаю, что изначально у числа $a$ может содержаться $k$ троек. Тогда число $c^3 - b^3$ должно содержать $3k$ троек; из них неполный квадрат может содержать только одну, а остальные тройки в количестве $3k-1$ обязана содержать разность $c-b$. Это следует из того, что число $(c-b)^2+3cb$ является суммой двух слагаемых, из которых второе содержит только одну тройку, а первое - больше одной.
Поэтому, - спасибо за сообщение, но в нём возможно только $m=1$.
А насчёт "замахиваться на Эйлера", - давно пора, и не только на него. Его промах понятен и простителен ввиду правильности идеи и доказательства в целом: он искал и нашёл метод спуска (пусть в одном случае, а не в двух). Но куда смотрели и почему ничего не видели комментаторы-специалисты-учёные? Или видели, но молчали, не желая подрывать авторитет гения? Вот и, например, в учебном пособии "Теоремы и задачи алгебры, теории чисел и комбинаторики" (2001г.) В.А.Колосов пишет: "Заметим, что разделение на два случая в доказательстве Эйлера эквивалентно разделению на случай, когда одна из компонент решения делится на 3, и случай, когда ни одна из компонент решения не делится на 3". А зачем в XIX-XX вв учёные-математики для ВТФ-5 рассматривали случай неделимости на 5 ни одного из связки трёх чисел (список математиков дан в книге П.Рибенбойма), когда делимость на 5 одного из чисел легко устанавливается даже без знания теоремы Софи Жермен и различных более древних китайских теорем об остатках? Вопросов много...

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение14.12.2016, 10:03 


21/11/10
546
leonid filiforsnik в сообщении #1176814 писал(а):
Поэтому, - спасибо за сообщение, но в нём возможно только $m=1$.

Уважаемый leonid filiforsnik!
Вы правы m=1.
Распишите подробности Вашего метода спуска и того что
leonid filiforsnik в сообщении #1175788 писал(а):
$h = u^2 + 3v^2$

Удачи.

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение15.12.2016, 07:53 
Заслуженный участник
Аватара пользователя


03/06/08
2417
МО
leonid filiforsnik в сообщении #1175788 писал(а):
Число V обязано делиться на 3

Почему?

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение15.12.2016, 09:40 


18/11/16
6
Уважаемый пианист!
В тексте моего сообщения указана конструкция квадратичной формы $U^2+3V^2$, и в ней числом $V$ служит выражение $v|3u^2-3v^2|$, содержащее множитель 3. Внимательнее читайте текст! Спасибо за вопрос!

-- 15.12.2016, 10:32 --

Уважаемый ishhan!
Метод спуска не мой, а П.Ферма; у меня только способ другой, а идея та же, она кратко в сообщении указана. Что касается вопроса о квадратичной форме, - есть много первоисточников, в том числе перечисленные в начале моего сообщения книги. Объяснять подробно здесь, - извините, нет у меня такого времени, да и форум для этого не предназначен; это является объёмной работой для преподавателей и учителей математики и репетиторов, а также предметом самостоятельного изучения интересующимися. А моя цель - элемент новизны в известном материале и краткость её изложения.

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение15.12.2016, 11:04 
Заслуженный участник
Аватара пользователя


03/06/08
2417
МО
leonid filiforsnik в сообщении #1177086 писал(а):
В тексте моего сообщения указана конструкция

Уфф! Не знаю, как зайти к вопросу ;)
Если нетрудно, укажите точно тот логический переход в доказательстве Эйлера, который Вы считаете ошибочным.
А то как-то непонятно, где, собс-но, ошибки ищем - в доказательстве Эйлера, или в Вашем сообщении.
И еще, если уж обсуждаем не исходный текст, давайте хотя бы на Эдвардса опираться, что ли, плюс-минус стандартный источник по предмету.

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение15.12.2016, 21:29 


21/11/10
546
leonid filiforsnik в сообщении #1177086 писал(а):
Что касается вопроса о квадратичной форме, - есть много первоисточников, в том числе перечисленные в начале моего сообщения книги. Объяснять подробно здесь, - извините, нет у меня такого времени, да и форум для этого не предназначен;

Уважаемый leonid filiforsnik, в дополнении к вашим ссылкам http://eqworld.ipmnet.ru/ru/library/mathematics/numtheory.htm
На этом интернет ресурсе отметим культовую книгу Постников М.М. Теорема Ферма. Введение в теорию алгебраических чисел. М.: Наука, 1978
и доказательство леммы Эйлера стр. 31 и далее.
И все же, может быть Вы дадите ещё немного разъяснений по поводу "школьной ошибки Л.Эйлера" основываясь на этом источнике.
А может быть, Вы в зашифрованном виде публикуете своё открытие!

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение16.12.2016, 01:57 


18/11/16
6
Уважаемые господа пианист и ishhan!
В своём первом ответе господину ishhan я привёл цитату из учебного пособия В.А.Колосова (в 2001г.- научный сотрудник СУНЦ МГУ, спец. по теории чисел, выпускник мехмата МГУ, кфмн), в которой сказано о разделении док-ва ВТФ-3 Эйлером на два случая. Смысл моего сообщения: а зачем вообще рассматривать один из случаев (в котором ни одно число из связки чисел $(a,b,c)$ не делится на 3), если он невозможен теоретически? .Объясняю чуть подробнее. Связка $(u,v)$ при возведении в куб даёт связку $(U,V)$, в которой $U=u|u^2-9v^2|, V=v|3u^2-3v^2|$. Далее Эйлер рассматривает только число $U$, раскладывая его на множители (в буквенном виде), манипуляции с которыми дают новую тройку чисел и метод спуска, - и при этом не обращает внимания на число $V$, из буквенного выражения которого следует его делимость на 3 (которая в данном случае невозможна); то есть Эйлер не учитывает то обстоятельство, что оба числа действуют в связке, и если любое из них "не работает", то и невозможно существование самой связки. И поэтому "алгебраические числа, Постников и Эдвардс" тут вообще ни при чём, ошибка Эйлера от них не зависит, - она такая же, как если бы вы решали в школе систему двух уравнений с двумя переменными и занялись бы проверкой решения по одной из переменных , не учитывая другую. Благодарю за вопросы.

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение16.12.2016, 11:35 
Заслуженный участник
Аватара пользователя


23/07/05
18035
Москва
leonid filiforsnik в сообщении #1177428 писал(а):
Смысл моего сообщения: а зачем вообще рассматривать один из случаев (в котором ни одно число из связки чисел $(a,b,c)$ не делится на 3), если он невозможен теоретически?
Как раз затем, чтобы доказать, что он "невозможен теоретически". А зачем же ещё? Или Вы считаете, что Эйлер был обязан делать это именно так, как желаете Вы? Видимо, он забыл с Вами посоветоваться.

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение16.12.2016, 19:54 


18/11/16
6
Уважаемый Someone!
Разумеется, гениальный Эйлер сделал так, как считал нужным. А в предложении "зачем вообще рассматривать один из случаев (в котором ни одно из связки чисел $(a,b,c)$ не делится на 3), если он невозможен теоретически?" я подразумевал как раз обязательную делимость на 3 одного из чисел, доказываемую устно одной строкой (приведена в тексте моего сообщения). И риторический вопрос адресован, разумеется, не Эйлеру, а комментаторам его док-ва (о чём я написал в ответе ishhan). Попробуйте и Вы задаться вопросом: можно ли считать целочисленную квадратичную форму $U^2+3V^2$ кубом аналогичной формы $u^2+3v^2$, если $V$ не делится на 3? Считаю, что нельзя, или я ошибаюсь?

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение16.12.2016, 19:58 
Заслуженный участник
Аватара пользователя


23/07/05
18035
Москва
Пускай нельзя. Но это надо доказать. А если не доказать, то будет дырка в доказательстве.

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение26.12.2016, 09:25 


18/11/16
6
Уважаемый Someone!
Извините, но какую "дырку в доказательстве" Вы имеете в виду (что "это надо доказать")?

 Профиль  
                  
 
 Re: ВТФ-3. Школьная ошибка Эйлера
Сообщение26.12.2016, 10:51 
Заслуженный участник
Аватара пользователя


23/07/05
18035
Москва
Естественно. "Считаю, что нельзя" — это не доказательство.
А если это уже кем-то доказано и опубликовано, то надо дать ссылку.
Но боюсь, что тогда всё ваше доказательство сведётся к ссылке.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 14 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group