Цитата:
Где учат анализу по Шварцу? Ответ: нигде.
Я же согласен, что массового студента опасно учить только по Шварцу. Даже если дополнить немного калькулюсом.
Цитата:
А вот начинающие сотрудники кафедры мат.анализа мехмата МГУ обязательно почитывают Фихтенгольца, иначе им первое время трудно работать.
При всем уважении к мехмату МГУ, я наслышан, как там преподают анализ. То есть "теории функций действительного переменного" там является основой программы, и ей уделяется большее время. Эта наука была весьма активна в первой половине двадцатого века, но сейчас состояние дел изменилось. Кроме того, даже если бы действительный анализ был бы настолько же активным, как и раньше, всё равно было бы несправедливо ставить его во главу угла.
Даже если смотреть только на анализ. А как же функциональный анализ? Он ничуть не менее важен! Более того, исследования там более активные, чем в "действительном". Но и на этом анализ не кончается. Анализ на многообразиях (и в
, и на абстрактных), геометрический анализ (это современная наука, получившаяся из синтеза некоторых тем в УЧП и дифференциальной геометрии, можете посмотреть, например, работы Яу), многомерный комплексный анализ, алгебраический анализ, микролокальный анализ, нелинейные геометрические УЧП. Есть ещё очень большая и активная наука - комплексная геометрия (алгебраическая и аналитическая), это, конечно, не анализ "в чистом виде", но она очень аналитическая и использует много результатов из комплексного анализа. Преподают всё это на мехмате? Я так понимаю, что функциональный анализ и многообразия как-то преподают, но не думаю, что им отдают столько времени, как "классическому анализу". Насчет остального я уверен, что если и читают спецкурсы, то не каждый год.
А представьте, сколько ещё наук разных и важных есть? В алгебре тем не меньше, чем в анализе - теория полей и Галуа, коммутативная алгебра, некоммутативная теория колец, упорядоченные поля, гомологическая алгебра, теория групп.
А геометрия? Тут вообще множество огромных фундаментальных наук. Уже только алгебраическая геометрия сама по себе необъятна. Там тебе и классические алгебраические многообразия, и теория схем Гротендика, и более категорные темы, вроде стэков (и высших стэков), и более аналитические темы, например, комплексная геометрия, и арифметические методы...
Причем это только "мэйнстримные" темы. Есть ещё менее известные и модные. Да хоть логика та же!
Извините, что-то много понаписал, просто вот такие мысли пришли. Хотел объяснить, почему мне кажется, что в плане того, как читаются обязательные курсы, на мехмат равняться не стоит.
-- 06.11.2016, 02:15 --Нельзя же судить о обязательной программе так: "Что мне пригодилось в научной работе, то и должны все изучать" (может вы и не судите).
Закончили Вы университет, поступили в аспирантуру. И, скорее всего, стали заодно и преподавать. Защитились--и опять преподавать (без отрыва от науки). В России чисто академических позиций немного, в США/Канаде постоянных таких позиций практически нет. И кому же Вы собрались преподавать? Студентов и аспирантов-математиков мало, и Ваш основной контингент это статистики (вкл. actuarial science), физики, химики, биологи, экономисты, ..., инженеры, ... и никому из них гомологическая алгебра не нужна, а нужны calculus, линейная алгебра, ОДУ, комплексный анализ, УЧП, теорвер, .... И что я наблюдаю: происходит часто алгебраизация преподавания этих предметов не потому, что надо, а потому что инструктор другого не знает. Ладно, физики терпят, а инженеры--народ грубый, и с ножом к горлу матлаб требуют.
Так что принцип другой: хотите изучать теорию категорий--исполать, но извольте быть готовы учить calculus, линейную алгебру, ОДУ. Причем быть готовым означает в том числе: знать существенно больше, чем будете требовать со студентов. А не будете готовы, так не жалуйтесь, если будете учить самый примитивный курс самым "нематематическим" студентам.
Вы, конечно, правы. Но calculus, линейная алгебра и ОДУ - это всё стандартные темы любой undergraduate программы. Их любой математик знает на большем уровне, чем необходимо "нематематикам". Для этого не нужно штудировать Фихтенгольца и Шварца одновременно.
Кстати, преподавание калькулюса, ЛА и ОДУ в западных университетах - это горе для любого математика, как мне кажется, даже самого классического-преклассического аналитика. Аналитик-то знает это всё, он учил всё "как надо", а его заставляют читать "одебиленный" курс без доказательств и с кучей рукомахательств. Это отдельная тема.
По-хорошему, физики должны учить физиков, а инженеры - инженеров. Тогда будет взаимопонимание.
P.S. Только не надо спрашивать: "Зачем тогда нужны математики?" Нужны, чтобы развивать науку и учить этой науке (науке, а не курсам в стиле "теория матриц без доказательств" вместо нормальной "линейной алгебры", которую, по-хорошему, вообще надо учить в контексте "абстрактной" алгебры и теории модулей, при этом уделяя внимание и приложениям, и вычислениям, чего не делается обычно: либо отдельно от алгебры (стандартные курсы), либо без деталей и приложений (как в "больших" учебниках алгебры). Нужны по той же причине, по которой нужны физики, биологи и так далее.
P.P.S. Но с чисто практической точки зрения, вы, к сожалению, правы, заставляют читать "убогие" курсы, вроде calculus-1, linear algebra without proofs и прочее. В этом плане мне подход МГУ, МФТИ и ВШЭ нравится, что там нет аналогов западных начальных курсов, содержание которых предполагает, что студент, извините, полный идиот (ну какой он идиот, если он поступил, например, в Гарвард?). Вместе "calculus 1/2/3" есть сразу курс "Математический анализ". У меня к нему много претензий, но вот с западным кошмаром он не сравнится.