Задача: найти такое подмножество
![$\mathbb{R}$ $\mathbb{R}$](https://dxdy-04.korotkov.co.uk/f/f/3/e/f3e711926cecfed3003f9ae341f3d92b82.png)
, чтобы и оно само, и его дополнение оба были всюду плотны в
![$\mathbb{R}$ $\mathbb{R}$](https://dxdy-04.korotkov.co.uk/f/f/3/e/f3e711926cecfed3003f9ae341f3d92b82.png)
, и оба имели мощность континуума.
Мое решение:
(Оффтоп)
Здесь и далее под записью некоторого числа будем понимать запись этого числа в троичной позиционной системе счисления. Возьмем в качестве искомого множества множество всех чисел, в записи которых цифра
![$1$ $1$](https://dxdy-01.korotkov.co.uk/f/0/3/4/034d0a6be0424bffe9a6e7ac9236c0f582.png)
встречается лишь конечное количество раз. Соответственно, его дополнение - множество всех чисел, в чьей записи цифра
![$1$ $1$](https://dxdy-01.korotkov.co.uk/f/0/3/4/034d0a6be0424bffe9a6e7ac9236c0f582.png)
встречается бесконечное количество раз.
Действительно, наше множество, в частности, содержит в качестве своего подмножества множество всех чисел, чья запись единиц вообще не содержит; доказательство континуальной мощности этого множества оставляем читателю. С другой стороны, наше множество является подмножеством действительной прямой, и выше континуума мощности иметь не может. Стало быть, континуум оно и есть.
Дополнение множества содержит в качестве подмножества множество всех чисел, в чьей записи на местах с четным номером всюду стоят единицы, а на местах с нечетным номером всюду неединицы. Рассуждая аналогично предыдущему пункту, устанавливаем, что и мощность дополнения также континуум.
Для любого действительного числа
![$a$ $a$](https://dxdy-01.korotkov.co.uk/f/4/4/b/44bc9d542a92714cac84e01cbbb7fd6182.png)
можно построить последовательность элементов из нашего множества, сходящуюся к данному числу. А именно, последовательность чисел
![$\{ a_n \}$ $\{ a_n \}$](https://dxdy-03.korotkov.co.uk/f/6/9/3/6934bee048ba7864dcb63e9ea992da9682.png)
, где запись каждого
![$a_n$ $a_n$](https://dxdy-03.korotkov.co.uk/f/6/5/1/6512cbd0d448700a036bf3a691c37acc82.png)
с точностью до
![$n$ $n$](https://dxdy-02.korotkov.co.uk/f/5/5/a/55a049b8f161ae7cfeb0197d75aff96782.png)
-й чифры после запятой совпадает с записью самого числа
![$a$ $a$](https://dxdy-01.korotkov.co.uk/f/4/4/b/44bc9d542a92714cac84e01cbbb7fd6182.png)
, зато после этой цифры идут одни только нули. Стало быть, наше множество всюду плотно.
Для дополнения к множеству тоже можно строить сходящуюся последовательность, только каждый элемент заканчивается не нулями, а единицами. Значит, и дополнение тоже всюду плотно.
Теперь вопрос: нет ли в решении ошибок? И есть ли какое-нибудь принципиально другое решение?