Еще одно кстати: как сюда вписывается метрика Киллинга?
Навскидку кажется, что, отталкиваясь от метрики можно получить или "обычное" представление (
сфера), а можно плоское с кручением.
Тогда следующий вопрос: то же самое, но если метрика не Киллинга (не всякая же метрика такова?)?
В чистом виде никак, имхо (необходимо дополнительное условие, согласующее связность с метрикой). Метрика Киллинга (точнее, метрический тензор Картана) фиксируется заданием структурных констант алгебры Ли, а тензоры кручения и кривизны (определенные на многообразии соответствующей группы Ли) зависят еще и от выбора значения произвольного вещественного параметра (теорема 3 в статье Акивиса). Поэтому любое условие, фиксирующее значение этого параметра, согласует связность с метрикой Киллинга. С произвольной метрикой ситуация сложнее...
А я правильно понимаю, что в пространстве с кручением момент импульса не сохраняется?
Это зависит от того, как вы определите это понятие (но как правило, нет). Обычно, в неметрических теориях типа Эйнштейна-Картана (см., например, "Калибровочная теория гравитации" Иваненко и др.), тензор кручения связывается с плотностью внутреннего момента импульса (спина) материи. Сам он не сохраняется, но сохраняются определенные комбинации (зависящие от вида исходного лагранжиана) тензора энергии-импульса и тензора спина.