2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 12:46 


14/08/16
4
Предлагаю простой метод проверки делимости числа на 3

Этот метод основан на присвоении каждой цифре от 0 до 9 определенной величины, названной мною весом. Для определения делимости числа на 3 вычисляется его общий вес. Если он равен 0 или кратен 3, то проверяемое число делится на 3.
Предлагаются следующие веса:
Для цифр 0, 3, 6, 9 вес равен 0,
для 1 равен -2,
для 2 равен -1,
для 4 равен -1,
для 5 равен 2,
для 7 равен 1,
для 8 равен 2.

Данный метод может быть полезен для проверки делимости на 3 больших чисел, так как при подсчете общего веса из рассмотрения исключаются цифры 0, 3, 6, 9, а цифры с положительным весом компенсируются цифрами с отрицательным весом.

 Профиль  
                  
 
 Posted automatically
Сообщение19.08.2016, 12:54 
Админ форума
Аватара пользователя


19/03/10
8952
 !  bazhenov, замечание за размещение темы в неподходящем разделе.

 i  Тема перемещена из форума «Работа форума» в форум «Математика (общие вопросы)»
Пока сюда. Дальше - на усмотрение модераторов математики.

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 13:14 


14/01/11
3037
По-моему, проще при последовательном суммировании цифр каждый раз брать остатки от деления на $3$ - не надо помнить никаких "весов".

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 13:23 
Заслуженный участник


02/08/11
7003
bazhenov, у вас опечатка в «весе» четвёрки.
Почему бы, раз вы уж решили использовать и отрицательные "веса", не обойтись только нулём и плюс-минус единицей?

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 13:43 


25/08/11

1074
Это признак делимости на любое число. Вес-это остаток от деления на данное число степеней основания. Все признаки делимости так получаются.

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 16:03 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
sergei1961 в сообщении #1145140 писал(а):
Это признак делимости на любое число.

Не на любое. ТС использует "поциферное" сравнение и суммирование остатков - поэтому не на любое. Для 3 и 9 сгодится.

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 16:13 
Аватара пользователя


07/01/15
1223
Otta, ну почему? Признаки делимости
На $2$, вот: $10^n \equiv 0$ (mod $2$), $n \ge 1$ (делимость числа на $2$ выясняем по последней цифре)
На $4$, вот: $10^n \equiv 0$ (mod $4$), $n \ge 2$ (так что выясняем по последним двум цифрам)
На $5$, вот: $10^n \equiv 0$ (mod $5$), $n \ge 1$ (по последней цифре)
На $11$, вот: $11^n = \pm 1$ (mod $11$) (известный признак делимости на $11 -$ смотрим на "знакопеременную" сумму цифр) Или Вы о другом?

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 16:15 
Заслуженный участник
Аватара пользователя


16/07/14
9147
Цюрих
SomePupil, чтобы определять делимость на $k$ по сумме цифр - нужно чтобы основание было сравнимо с $1$ по модулю $k$.

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 22:18 


25/08/11

1074
Otta - мне кажется я был прав, это банальность. И в первом посте для 4 нужно поправить вес, или нет?

-- 19.08.2016, 23:20 --

mihaild -кто сказал что просто по сумме цифр, по сумме цифр вот с весами...

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 22:38 
Заслуженный участник


08/04/08
8562
sergei1961 в сообщении #1145247 писал(а):
mihaild -кто сказал что просто по сумме цифр, по сумме цифр вот с весами...
По сумме цифр с весами можно тривиально указать "способ" проверки делимости на $m$ - "способ" тривиально получается заменой $10^k$ на $10^k \bmod m$ в разложении рассматриваемого числа в десятичное представление. Последовательность будет периодична в силу конечности числа возможных значений и тривиальной алгебры, ну и все...
Лучше бы он делимость чисел Ферма или гипотезу Артина анализировал...

bazhenov, предлагаю Вам интересную задачу.
Возьмем простое число $p=7$. Если мы ищем признак делимости на 7, то легко заметить, что мы вынуждены брать $p-1=6$ различных весов для построения признака делимости на $p$. Надо доказать, что таких чисел $p$, для которых число весов в признаке делимости $=p-1$ - бесконечно.

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 22:40 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
sergei1961
Правы Вы или нет, зависит не от Вас, а от ТС. Поскольку Ваше понимание, как он вычисляет общий вес, может не совпадать с тем, как он его на самом деле вычисляет.
Для четверки - конечно, опечатка.
bazhenov
Что такое "общий вес" числа? Как Вы его вычисляете? На конкретном примере, если не сложно.

-- 20.08.2016, 00:41 --

(Sonic86)

Sonic86 в сообщении #1145251 писал(а):
Лучше бы он делимость чисел Ферма или гипотезу Артина анализировал...
Никому не запретишь придумывать очередной промокаемый порох.

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение19.08.2016, 22:45 
Заслуженный участник


08/04/08
8562

(Otta)

Otta в сообщении #1145252 писал(а):
Никому не запретишь придумывать очередной промокаемый порох.
Надо сделать еще один раздел возле Пургатория - Баянотека. И темы туда перетаскивать после полного распознания баяна. Баяном считать то, что явно описано хоть в каком-нибудь учебнике. Было бы хорошо наверное.


bazhenov в сообщении #1145121 писал(а):
Этот метод основан на присвоении каждой цифре от 0 до 9 определенной величины, названной мною весом. Для определения делимости числа на 3 вычисляется его общий вес. Если он равен 0 или кратен 3, то проверяемое число делится на 3.
Предлагаются следующие веса:
Для цифр 0, 3, 6, 9 вес равен 0,
для 1 равен -2,
для 2 равен -1,
для 4 равен -1,
для 5 равен 2,
для 7 равен 1,
для 8 равен 2.

кстати, метод не пашет: $w(544)=2-1-1=0$, однако $3$ не делит $544$.

Метод будет работать только если взять все веса = 1. Что превратит его в обычный признак делимости на 3.

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение20.08.2016, 00:20 
Заслуженный участник
Аватара пользователя


16/07/14
9147
Цюрих
sergei1961 в сообщении #1145247 писал(а):
mihaild -кто сказал что просто по сумме цифр, по сумме цифр вот с весами...

Если веса зависят от позиции - то да, можно (можно выбирать любые веса, сравнимые с указанными Sonic86 по модулю $m$).
Если мы хотим, чтобы веса не зависели от позиции - то нужно ограничение $\forall k,n: 10^k \equiv 10^n (\bmod m)$, что эквивалентно $10 \equiv 1 (\bmod m)$.

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение20.08.2016, 09:44 
Заслуженный участник
Аватара пользователя


11/03/08
9904
Москва
Ну, собственно, кроме веса для четвёрки, это остатки от деления на 3, только для 1 и 2 из остатка вычтено 3 (ну, или принято иное определение остатка, "деление с избытком частного", так что остаток неположителен). То есть в традиционном мы сперва складываем разряды, потом берём остаток, а тут берём остаток от каждого разряда, складываем и ещё раз остаток. Может пригодиться для компьютеров с разрядностью 2 бита. Во всех прочих случаях нецелесообразно.

 Профиль  
                  
 
 Re: Простой метод проверки делимости числа на 3
Сообщение20.08.2016, 09:49 


25/08/11

1074
mihaild - понял, спасибо. Интересное уточнение.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 29 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group