В "Элементах" более-менее понятно
объясняется:
Цитата:
Расстояние до источника гравитационно-волнового излучения тоже вычисляется по пойманному всплеску. Если мы измерили волновой профиль, мы знаем массы, а значит, можем совершенно однозначно вычислить излученную мощность. Одно жестко связано с другим, никакой свободы интерпретации тут нет. А значит, измерив амплитуду пришедшей волны, мы сможем сосчитать, с какого расстояния прилетел всплеск — ведь его амплитуда ослабляется пропорционально расстоянию (см. простые расчеты в прошлой новости). Поэтому астрофизики называют слияния черных дыр стандартными сиренами — по аналогии со «стандартными свечами», которые используются для определения расстояний до галактик.
Тут, правда, есть тонкость: амплитуда дошедшего до нас сигнала зависит не только от расстояния до источника, но и от ориентации плоскости орбиты относительно направления за Землю. Эти две зависимости можно разделить, если измерить поляризацию волны, либо если слияние будет сопровождаться сильной орбитальной прецессией и ее удастся увидеть в профиле сигнала. С нынешней парой детекторов это пока сделать не удается, поэтому и дистанция измеряется не очень точно. Расстояние до всплесков GW150914 и GW151226 было оценено в 420 и 440 мегапарсек с погрешностью почти 50%, что отвечает красному смещению z ≈ 0,1. Событие-кандидат LVT151012 пришло с расстояния примерно 1000 Мпк, с красного смещения z ≈ 0,2; неудивительно, что оно оказалось таким слабым.
Тут полезно, кстати, добавить, что, раз источники расположены на таком значительном удалении, то пришедшие от них гравитационные волны испытывают красное смещение. Поэтому видимый нами период осцилляций в (1 + z) раз больше исходного, и на это надо делать поправку при вычислении масс черных дыр.
Но всё равно не совсем понятно: раз частота плывёт, то можно ли быть уверенным в правильности найденных масс? Или амплитуда однозначно находится по результатам моделирования?... Скользкий какой-то момент...