2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Maximum value
Сообщение12.04.2016, 06:33 


23/04/11
1
Maximum value of $f(x) = \left|\sqrt{\sin^2 x+2a^2}-\sqrt{2a^2-1-\cos^2 x}\right|\;,$ Where $a,x\in \mathbb{R}$

I have Tried like this way:: Here $f(x) = \left|\sqrt{\sin^2 x+2a^2}-\sqrt{2a^2+\sin^2 x-2}\right|$

Let $\sin^2 x+2a^2=y\;,$ Then $f(y) = \left|\sqrt{y}-\sqrt{y-2}\right| = \frac{2}{\left|\sqrt{y}+\sqrt{y-2}\right|}$

So for $y\geq 2\;,$ We get $\sqrt{y}+\sqrt{y-2}\geq \sqrt{2}$. So $\displaystyle \frac{1}{\sqrt{y}+\sqrt{y-2}}\leq \frac{1}{\sqrt{2}}$

So $\displaystyle f(y) = \frac{2}{\left|\sqrt{y}+\sqrt{y-2}\right|}\leq \frac{2}{\sqrt{2}}=\sqrt{2}$

But above process is very lengthy, How can we solve it using Inequality Directly.

Help me , Thanks

 Профиль  
                  
 
 Re: Maximum value
Сообщение13.04.2016, 04:31 
Заслуженный участник
Аватара пользователя


11/12/05
10059
Is this problem about real- or complex variables? Because in the former case the parameter $a$ ought to be bigger or equal to 1 by absolute value.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 2 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: StudentV


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group