У Полякова в 2 раза больше?
Нет, там тоже двойка вылезает.
Для лагранжиана, как я предполагаю, нужен ещё какой-то векторный потенциал, ротор которого будет равен
? Как он называется?
Да никак не называется. Назовите магнитным векторным потенциалом, если хотите. Правда, точно так же как электрический не очень хорошо определён в присутствии магнитных зарядов, так же и магнитный будет не очень хорошо определён в присутствии электрических зарядов - а их-то на свете много. Но можно полный тензор
разложить на два слагаемых, одно из которых образовано электрическим, а другое - магнитным потенциалом, это теорема Гельмгольца о разложении.
Почему, если уравнения для
и
симметричны,
в отличие от
считается псевдовектором?
Потому что сама их симметрия проходит через слово "псевдо-", грубо говоря.
Хотя напоминаю, это проблема нефизическая (если мы не живём в неориентируемой Вселенной, что обычно отвергают - были бы трудности со слабым взаимодействием). Более того, ещё в начале 20 века заметили, что уравнения для
и для
вообще можно линейно смешать между собой, и получить некий "дуальный поворот". Например, если в природе фундаментальная частица имеет некий электрический и некий магнитный заряды, всегда в одной и той же пропорции, то это ненаблюдаемо: дуальным поворотом теория превращается в вариант, в котором этот заряд целиком считается чисто электрическим.