Читал, что в числе Пи можно встретить рано или поздно любую конечную последовательность цифр.
Не могу понять, как это доказать.
Думал доказать как-то так: пусть надо встретить последовательность цифр

. От противного: пусть она не встречается в числе Пи. Тогда, так как число знаков у пи бесконечно, а количество последовательностей из цифр длины

конечно, то рано или поздно они начнут повторяться. Отсюда как-то должен идти переход к рациональности числа пи, а отсюда и противоречие. Вот только они могут хаотично повторяться, так что никакой рациональности тут по-прежнему не будет