Вопрос в том, насколько существенно использование именно полиномов. Если речь исключительно о сглаживании кривой, то вполне может оказаться оправданным разбиение кривой на кусочки и сглаживание сплайнами. Если же речь идёт непременно о полиноме - Вы напоролись на мультиколлинеарность. Корреляция между степенями x достаточно высока. Скажем, на данном на рисунке отрезке корреляция между девятой и десятой степенью x составит 99.88%. Число обусловленности корреляционной матрицы становится совершенно катастрофическим, и результат расчёта определяется игрой ошибок округления, причём значения коэффициентов обычно растут до неприличия. Рассчитывать полиномиальную регрессионную модель высоких степеней обычными программами МНК плохо.
Переход к более устойчивым численно алгоритмам (сингулярному разложению, например) решает проблему лишь частично, поскольку дело не только во влиянии собственно вычислительных ошибок, но и во влиянии внешних помех.
Паллиативное решение - нормирование и центрирование переменной x, приводя её к
, что устраняет корреляцию между чётными и нечётными степенями вовсе, а между чётными и чётными и нечётными и нечётными уменьшая. Затем, разумеется, надо вернуться к исходному масштабу.
Полную гарантию даёт использование ортогональных полиномов, а потом возврат в исходное пространство (только надо иметь в виду, что ортогональные полиномы непрерывной переменной и дискретной переменой не одно и то же, и ортогональность вводится с разным весом).