В 1-е классы поступает 45 человек: 20 мальчиков и 25 девочек. Их распределили по двум классам: в одном должно получиться 22 человека, а в другом ― 23. После распределения посчитали процент девочек в каждом классе и полученные числа сложили. Каким должно быть распределение по классам, чтобы полученная сумма была наибольшей?Мое решение.
Пусть в 1-м классе
![$x$ $x$](https://dxdy-04.korotkov.co.uk/f/3/3/2/332cc365a4987aacce0ead01b8bdcc0b82.png)
девочек, тогда в 2-м
![$25-x$ $25-x$](https://dxdy-04.korotkov.co.uk/f/f/c/b/fcba1205297f2079aa8dd5031ddb490d82.png)
Обозначим через
![$\alpha $ $\alpha $](https://dxdy-04.korotkov.co.uk/f/b/7/9/b7932a8b63ed6ae7ca61921ec2b87d4082.png)
- процент девочек в 1 классе.
Обозначим через
![$\beta $ $\beta $](https://dxdy-02.korotkov.co.uk/f/d/f/8/df81936fe460127c3124e7ac2ab7f07e82.png)
- процент девочек в 2 классе.
тогда
![$\alpha =\frac{50x}{11}$ $\alpha =\frac{50x}{11}$](https://dxdy-03.korotkov.co.uk/f/2/e/c/2ec9b311db019c9c6781ea49f53f36cd82.png)
и
![$\beta = \frac{2500-100x}{23}$ $\beta = \frac{2500-100x}{23}$](https://dxdy-04.korotkov.co.uk/f/b/6/b/b6b3bb038b03a49d814e8e27737972d782.png)
Найдем
![$\alpha + \beta =\frac{50x+27500}{253}$ $\alpha + \beta =\frac{50x+27500}{253}$](https://dxdy-01.korotkov.co.uk/f/4/c/d/4cd8db81949db14bf62aeda283b32f9b82.png)
Я понимаю, что надо найти наибольшее значение этой функции только не пойму на каком отрезке....
Другие решения пож-та не предлагайте, я их посмотрел в решениях, мне интересно понять я правильно начал решать задачу, или нет.