2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Нечеткий регрессионный анализ
Сообщение30.03.2008, 00:41 


29/03/08
2
Необходимо срочно написать дипломную работу «Нечеткий регрессионный анализ». Но даже литературу найти не могу! А сроки поджимают.
Пожалуйста, помогите найти что-либо по этой теме!!! Очень надо.

Добавлено спустя 2 часа 47 минут 10 секунд:

Пожалуйста помогите найти:

Могиленко А. В. Теория нечетких множеств. Нечеткий регрессионный анализ / А. В. Могиленко. – Томск : Печат. мануфактура, 2004. – 61 с. : ил., схемы ;
20 см. – Библиогр.: с. 60 (10 назв.). - 100 экз.

Может есть у кого или подскажете где найти?!

 Профиль  
                  
 
 
Сообщение30.03.2008, 16:21 
Заслуженный участник
Аватара пользователя


03/03/06
648
Karina_and_cats

Этой книги у меня нет, но вот есть другая, в которой эта тема рассматривается. Если я не ошибаюсь (уточню чуть позже) книга называется вот так Трухаев Р.И. Методы принятия решений в условиях неопределенности.

Вообще нечеткий регрессионный анализ практически не отличается от <<четкого>>. Следует рассмотреть всевозможные ситуации:
1) входные данные четкие, выходные нечеткие, следовательно, коэффициенты регрессии нечеткие;
2) входные нечеткие, выходные нечеткие, коэффициенты регрессии могут быть как четкими, так и нечеткими.

Кажется все варианты.

Что-то Вы с дипломной припозднились :)

 Профиль  
                  
 
 
Сообщение30.03.2008, 19:51 


29/03/08
2
reader_st, спасибо!
Цитата:
Что-то Вы с дипломной припозднились :)

Вечно так, дотягиваю до последнего...

 Профиль  
                  
 
 
Сообщение31.03.2008, 17:34 
Заслуженный участник
Аватара пользователя


03/03/06
648
Karina_and_cats

Извиняюсь, я ошибся, книга Трухаев Р.И. Методы принятия решений в условиях неопределенности имеет некоторое отношение к нечетким множества, но практически никакого к нечеткому регрессионному анализа, а вот Вощинин А. П., Сотиров Г. Р. Оптимизация в условиях неопределенности: Книга + дискета. — Изд-во МЭИ (СССР); «Техника» (НРБ), 1989. — 224с. ил. подойдет. Книгу можно взять вот здесь

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group