что один из упомянутых ... множителей в интересующих нас случаях будет равен 1 -- для этого достаточно усвоить программу по математике за 5-й класс на твёрдую тройку.
Легким нажатием пальца ЗУ
Исключаем отрицательный параметр. Имеем количество переменных 25, степень полинома prim -- 24, primz -- 24
Я использую Mapl 17, а для публикации синтаксис Matlab M, скобки раскрываю средствами Mapl 17.
prim := 1-(w*z+h+j-q)^2-(g*(h+j)+h-z)^2-(2*n+p+q+z-e)^2-(-f^2+1)^2-(e^3*(e+2)*(a+1)^2+1-o^2)^2-((a^2-1)*y^2+1-x^2)^2-(16*r^2*y^4*(a^2-1)+1-u^2)^2-(((a(4*d*y+n)+u(4*d*y+n)^2*(u(4*d*y+n)^2-a(4*d*y+n)))^2-1)^2+1-(c*u+x)^2)^2-(n+l+v-y)^2-((a^2-1)*l^2+1-m^2)^2-(a*i-i-l)^2-(p+l*(a-n-1)+b*(2*a*n-n^2+2*a-2*n-2)-m)^2-(q+y*(a-p-1)+s*(2*a*p-p^2+2*a-2*p-2)-x)^2-(z+p*l*(a-p)+t*(2*a*p-p^2-1)-p*m)^2
Завораживающая математика!
И все же не о вкусах дискуссия.
Если в вике код верен,
Спасибо, за предложение. К тому же я вставил из вики в Мапл без проблем.
Во втором варианте явные опечатки. Если их исправить, то он становится равным первому.
Я согласен с
venco. Можно остановиться на первом варианте.
Итак есть полином Матиясевича с 25 переменными 24 степени. Решение нисколько не приблизилось.
Попробовал в Мапле случайный выбор, каждая переменная "независимо" выбирается из интервала [1,100].
Естественно ничего не получил ( после 10 попыток оптимизм исчерпался). Попытка пройтись по каждому ребру, совершенно очевидно, бесперспективна. К тому же это уже обсуждалось в предыдущих постах. Маленькие параметры из [1,10], это по сообщению
arseniiv уже давно перебрали. Полином Матиясевича с 10 параметрами имеет степень более
. Типичная "теорема о существовании" без шансов проверить численно. Поэтому я присоединяюсь к пессимистам в деле случайного поиска хоть одного полезного набора параметров. С уважением,