2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Отображение со свойством поднятия путей - накрытие
Сообщение29.01.2016, 14:29 
Добрый день. Помогите пожалуйста разобраться с доказательством следующего утверждения:

Пусть $p: E \to B$ - непрерывное отображение линейно связных локально односвязных топологических пространств, причём для всякой $b \in B$ прообраз $p^{-1}(b)$ - дискретен, кроме того $p$ обладает свойством поднятия путей (т.е. для всякого пути $\gamma: [0; 1] \to B$ и всякой точки $x \in p^{-1}(\gamma(0))$ существует единственный путь $\Gamma: [0; 1] \to E$ такой что $\Gamma(0) = x, \ p \circ \Gamma = \gamma$), тогда $p$ - накрытие.

Доказательство, найденное мной, выглядит так:

Фиксируем произвольную точку $b \in B$, слоем назовём $F = p^{-1}(b)$. Рассмотрим произвольное односвязное открытое множество $U \subset B$. В нём зафиксируем точку $a$ и путь $\gamma$ с началом в $a$ и концом в $b$. Далее для каждой точки $c \in B$ зафиксируем внутри $U$ путь $\delta_c$, с началом в $c$ и концом в $a$. Определим тривиализацию как $\lambda: y \mapsto $ конец поднятия пути $\delta_{p(y)} \cdot \gamma $.

Далее надо показать, что $p|_{p^{-1}(U)} \times \lambda$ - гомеоморфизм. Его биективность понятна, но далее в доказательстве не показывают непрерывности ни его, ни обратного (оставляют в качестве упражнения). Мне не понятно даже почему $\lambda$ - непрерывно. Как при этом использовать односвязность $U$? Ясно, что она гарантирует, что внутри $U$ всякий путь, соединяющий точки из $U$, будет единственен с точностью до гомотопии с фиксированными концами, но что это даёт? У нас есть поднятие путей, но ничего не говорилось про поднятие гомотопий. По идее (если $p$ - накрытие), у всех гомотопных путей в $U$ с началом в одной точке и концом в $a$ должны быть одинаковые концы поднятий, но как это показать?

Выходит, что если утверждение верно, то мы можем получить полную информацию о том, как устроена топология на $E$, но как именно?

 
 
 
 Re: Отображение со свойством поднятия путей - накрытие
Сообщение29.01.2016, 14:59 
Аватара пользователя
Поднимите гомотопию вручную: один раз в жизни такие вычисления надо проделать
я к тому, что там явные почти формулы, из них следует непрерывность

-- Пт янв 29, 2016 15:06:23 --

и лично мне очень помогали рисунки)))

 
 
 
 Re: Отображение со свойством поднятия путей - накрытие
Сообщение30.01.2016, 11:06 
Вручную - это в каком-то конкретном примере или в духе "каждая точка исходного пути при гомотопии сама проделывает путь"?

 
 
 
 Re: Отображение со свойством поднятия путей - накрытие
Сообщение31.01.2016, 15:47 
Аватара пользователя
VanD в сообщении #1095027 писал(а):
Фиксируем произвольную точку $b \in B$, слоем назовём $F = p^{-1}(b)$. Рассмотрим произвольное односвязное открытое множество $U \subset B$. В нём зафиксируем точку $a$ и путь $\gamma$ с началом в $a$ и концом в $b$. Далее для каждой точки $c \in B$ зафиксируем внутри $U$ путь $\delta_c$, с началом в $c$ и концом в $a$. Определим тривиализацию как $\lambda: y \mapsto $ конец поднятия пути $\delta_{p(y)} \cdot \gamma $.

1) слой лучше назвать $F_b$
2) $U$ -- односвязная окрестность точки $b$, а не произвольное односвязное открытое множество
3) $c\in U$
4) Отображение $\lambda:p^{-1}(U)\to p^{-1}(U)$
5) конец поднятия с началом в какой точке?
6) и зачем вообще точка $a$?

Что там за гомеоморфизм? Между чем и чем?

 
 
 
 Re: Отображение со свойством поднятия путей - накрытие
Сообщение31.01.2016, 18:08 
2) Вы предлагаете какой-то другой путь доказательства? В исходном (описанном выше) неполном доказательстве $U$ не была окрестностью $b$. Нам же надо для некоторого открытого покрытия $B$ понастроить тривиализаций $\lambda$, $U$ было просто односвязным открытым подмножеством $B$. Как я понимаю, $b$ здесь играет роль отмеченной точки, в прообраз которой будут отображать все тривиализации.
3) это вроде понятно, весь же путь (точнее, образ пути) $\delta_c$ внутри $U$
4) Отображение $\lambda: p^{-1}(U) \to F_b$, технически можно написать и $\lambda : p^{-1}(U) \to p^{-1}(U)$, но я пока не понимаю, что это даст.
5) $\lambda : y \mapsto $ конец поднятия пути $\delta_{p(y)} \cdot \gamma$, где начало этого поднятия и есть $y$.
6) Как я понимаю, она для того, чтобы все пути, соединяющие точки из $U$ с $b$ доходили до $b$ через фиксированный $\gamma$, начало которого $a$ и лежит в $U$, чтобы все тривиализации отображали в прообраз $b$ и были непрерывными, но я не вижу, почему это так.

alcoholist в сообщении #1095537 писал(а):
Что там за гомеоморфизм? Между чем и чем?

Надо показать, что существует открытое покрытие $B$, такое что для каждого его элемента $U$ существует отображение (тривиализация) $\lambda: p^{-1}(U) \to F$ (где $F$ одинаковое для всех тривиализаций дискретное пространство), такое что $p|_{p^{-1}(U)} \times \lambda : p^{-1}(U) \to U \times F$ - гомеоморфизм.

Вы предлагаете сначала показать, что прообразы всех точек $B$ попарно гомеоморфны и так немного разгрузить доказательство, взяв $U$ односвязной окрестностью $b$ и убрав $a$? Это понятно как сделать, но мне всё равно пока не ясно, как показать, что у гомотопных путей с общими началом и концом после поднятий с общим началом останется и общий конец.

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group