2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение23.01.2016, 21:47 
Аватара пользователя
stedent076 в сообщении #1093569 писал(а):
$0=2\cdot(\sqrt{(6x+1)(4x+2)}+\sqrt{16x^2+24x})$

А когда сумма двух неотрицательных слагаемых равна $0$? :shock:

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение23.01.2016, 21:50 
Аватара пользователя
stedent076 в сообщении #1093583 писал(а):
Но корни первого радикала не являются корнями второго. Я в ступоре

Это всего лишь означает, что исходное уравнение не имеет действительных решений.
Но это ещё не конец света. :D

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение23.01.2016, 21:53 
Аватара пользователя
Brukvalub
Я думал, что можно подобрать такие x, что оба подкоренных выражения обратятся в нуль. Посмотрите, пожалуйста, нигде не напортачил?

-- 23.01.2016, 22:56 --

Mihr
Ну это задачка для "продвинутых десятиклассников", вряд ли составители предполагали знакомство школьников с комплексными числами.

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение23.01.2016, 21:58 
Аватара пользователя
stedent076 в сообщении #1093617 писал(а):
вряд ли составители предполагали знакомство школьников с комплексными числами

Я тоже не говорю о комплексных корнях. А что: записать в ответ "нет корней" - это чем-то плохо?

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение23.01.2016, 22:00 
Аватара пользователя
Mihr
просто у меня есть подозрение, что я где-то ошибся

-- 23.01.2016, 23:05 --

Mihr
а впрочем, мы правы. Я сейчас построил функцию онлайн :
$\sqrt{6x+1}-\sqrt{4x+2}-\sqrt{8x}-\sqrt{2x+3}$.Действительных нулей у нее нет

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение23.01.2016, 22:09 
Аватара пользователя
stedent076,
давайте напишем так, не раскрывая скобки под знаком корня:
$\sqrt{(6x+1)(4x+2)}+\sqrt{8x(2x+3)}=0$
Так совершенно отчётливо видно, что первое слагаемое не обращается в ноль одновременно со вторым.
Значит, ошибки нет.
Ну, разве что Вы неверно записали условие задачи.

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение23.01.2016, 22:17 
Аватара пользователя
Mihr
Я списал неправильно. Чертова невнимательность(

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение24.01.2016, 17:51 
Аватара пользователя
Уважаемый gris,
К этой формуле нужно прийти?
$\frac{1-q^6}{1-q^2}\cdot\frac{(1-q)^2}{(1-q^3)^2}=\frac{1}{288}$

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение24.01.2016, 18:05 
Аватара пользователя
$\dfrac{84}{9}:\left(\dfrac{14}{3}\right)^2=\dfrac{84\cdot 3\cdot 3}{9\cdot 14\cdot 14}=$\dfrac{6}{14}=$\dfrac{?}{?}$

Теперь $1-q^6=(1-q^3)(1+q^3)$ и сокращать до упаду.

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение24.01.2016, 19:15 
Аватара пользователя
gris
Спасибо). А можно ли дальше сократить дробь?
$\frac{(1+q^3)(1-q)}{(1-q^3)(1+q)}$

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение24.01.2016, 19:23 
Аватара пользователя
Разложите сумму и разность кубов

 
 
 
 Re: Уравнение с радикалами и задача на геометр. прогрессию.
Сообщение24.01.2016, 19:57 
Аватара пользователя
gris
Спасибо за помощь! Разобрался.

 
 
 [ Сообщений: 27 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group