2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 решение системы степенных уравнений
Сообщение21.01.2016, 13:00 
Привет!

Пытаюсь решить систему из трех уравнений с тремя неизвестными следующего вида:
$
\begin{cases}
a+b+c = summ \\
a^2+b^2+c^2 = squareSumm \\
a^3+b^3+c^3 = cubeSumm \\
\end{cases}
$

где известны значения сумм и нужно найти значения членов a, b и c. Посмотрел метод Крамера и Гаусса, но они только для линейных уравнений. Собственно вопрос мой в том, возможно ли в принципе решить систему такого рода?

Если можно, дайте пожалуйста толчок мысли, мои собственные идеи иссякли.

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 13:04 
Про симметрические многочлены слышали что-нибудь?

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 13:16 
Первый раз в жизни слышу (

Почитал на википедии, но так и не понял, чем перестановка входящих переменных может помочь в решении задачи.

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 13:29 
А задачу откуда взяли?

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 13:30 
Аватара пользователя
Fennec в сообщении #1092852 писал(а):
так и не понял, чем перестановка входящих переменных может помочь в решении задачи

Позволит, опираясь на теорему Виета, свести решение данной системы к решению одного кубического уравнения с одной неизвестной. Считать ли это шагом к решению задачи или не считать так - решайте сами.

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 13:37 
Sender в сообщении #1092854 писал(а):
А задачу откуда взяли?


Задача с Яндекс стажировок, которую я уже завалил, но все равно хочу понять как она решается. Естественно это была не вся задача, а только последний ее фрагмент, с которым я не управился.

Mihr в сообщении #1092855 писал(а):
Fennec в сообщении #1092852 писал(а):
так и не понял, чем перестановка входящих переменных может помочь в решении задачи

Позволит, опираясь на теорему Виета, свести решение данной системы к решению одного кубического уравнения с одной неизвестной. Считать ли это шагом к решению задачи или не считать так - решайте сами.


Как раз дошел до теоремы Виета, сейчас буду разбираться. Спасибо за подсказку.

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 14:55 
Fennec в сообщении #1092856 писал(а):
дошел до теоремы Виета
К ней надо добавить основную теорему симметрических многочленов (в Википедии она так называется, так что, думаю, можно найти источник).

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 15:12 
Нет, все-таки я застрял. Я так понял, что эту систему уравнений нужно привести к виду кубического уравнения и по идее набор эти формул http://100formul.ru/13 должен мне в этом помочь.

Если я правильно понял что такое симметрический многочлен, то это такой многочлен, в котором от перестановки мест переменных результат не изменится. То есть возможны только три операции в симметрическом многочлене: сложение, вычитание, умножение.

Дальше, на википедии приведен такой текст
Цитата:
Основная теорема теории симметрических многочленов гласит, что любой симметрический многочлен может быть представлен единственным образом в виде многочлена от основных симметрических многочленов.


основными симметрическими многочленами являются $x + y$ и $xy$

Но вроде как исходные уравнения так и представлены, разве нет?

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 15:57 
Аватара пользователя
Fennec в сообщении #1092868 писал(а):
основными симметрическими многочленами являются $x + y$ и $xy$
Нет. Основные симметрические многочлены для случая трех переменных, который Вам нужен - это $x + y + z$, $xy + xz + yz$ и $xyz$. Они же фигурируют и в теореме Виета.

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 16:20 
Fennec в сообщении #1092868 писал(а):
То есть возможны только три операции в симметрическом многочлене: сложение, вычитание, умножение
По вашей ссылке, обратите внимание, есть и деление.
Общий план примерно такой: выражаем левые части уравнение через основные (по вашей ссылке — три первых), имея три основных, составляем кубическое уравнение, его корнями как раз и будут ваши переменные. Как выразить левые части — можно посмотреть доказательство основной теоремы, оно конструктивно; в данном случае, можно и просто подбором.

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 16:24 
Аватара пользователя
В нежном возрасте я прочел книжку: Болтянский, Виленкин Симметрия в алгебре, и она "глубоко меня перепахала"! В ней почти на пальцах подробно рассказано, как решать подобные системы.

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 17:27 
Аватара пользователя
Решение для знающих уже Вам сказали. Решение для "соображающих", выявление коих, возможно, и было целью данной задачи, я давать не буду, а покажу, как решать более простую.
$x+y=A$
$x^2+y^2=B$
Чешем в затылке. Умеем мы решать только линейные. В первом уравнении квадратов нет, во втором есть. Как-то надо выравнять. Возводим первое в квадрат
$x^2+2xy+y^2=A^2$
Вычтя второе из квадрата первого - получаем $xy$
Вычтя из квадрата первого учетверённое $xy$, получаем
$x^2-2xy+y^2=(x-y)^2$, откуда находится $x-y$ (слегка задумываемся о знаках) и вуаля - у нас есть линейная система!
А теперь это же, но применительно к кубам...

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 18:37 
Ого, сколько вас тут откликнулось! Спасибо! Дайте мне немного времени, я попробую составить решение еще раз.

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 19:29 
Аватара пользователя
Fennec
А правые части уравнений произвольные? При некоторых значениях система решается особенно легко...

 
 
 
 Re: решение системы степенных уравнений
Сообщение21.01.2016, 20:20 
provincialka в сообщении #1092957 писал(а):
Fennec
А правые части уравнений произвольные? При некоторых значениях система решается особенно легко...


Значения сумм являются входными параметрами для программы, по ним необходимо вычислить значения переменных.

 
 
 [ Сообщений: 26 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group