Изучаю вейвлет преобразование по книге Короновский А. А., Храмов А. Е. Непрерывный вейвлетный анализ и его применение.
Непрерывное вейвлет-преобразование
Для вычисления
предлагается по теореме свёртки найти обратное Фурье-преобразование от произведения Фурье-образа исходного сигнала на комплексно сопряженный Фурье-образ вейвлетной функции:
но в Фурье-образе исходного сигнала нет привязки ко времени, есть только частота... Как различить тогда случай, когда, например, есть две синусоиды с разной частотой, начавшиеся в начальный момент времени, от случая, когда одна синусоида начинается в начальный момент времени, а вторая синусоида с другой частотой, начинается не в начальный момент времени? Как найти момент времени, с которого началась вторая синусоида?
i |
Оформляйте все формулы, включая одиночные символы-обозначения. Исправлено. |