Начало сделано уж точно правильно.
1-й член асимптотики Вы нашли правильно, остается только обосновать. Обоснование обычно делается в 2 шага:
1. Рекуррентная "раскрутка" уравнения - подставляете выражение для
само в себя нужное количество раз.
2. Находите какое-нибудь слабое ограничение на
(в данном случае очевидно, например, что
при
, с помощью него получается 1-й член асимптотики) и с помощью него обрываете рекуррентность и получаете асимптотическое разложение
Подробный пример решения таким методом я видел в Грэхеме Кнуте Паташнике Конкретная математика в последней главе.
И здесь можно так же.
Вообще, если Вам надо найти несколько членов асимптотического разложения, а Вы умеете находить только первый, то подстановкой текущего асимптотического разложения и решением нового уравнения Вы можете найти следующие члены асимптотики.
Я знаю книжку де Брейна Асимптотические методы в анализе - там есть подобные задачи.