Это учебная задача или прикладная? Если учебная, боюсь, она с наколкой. Подынтегральное выражение - сдвинутый полином Лежандра, в узлах гауссовой квадратуры принимает значение 0, и точный ответ будет 0. Смысл наколки - заставить понять условия применимости гауссовой квадратуры. В частности, для какого порядка она работает, и какова степень здесь у подынтегрального выражения.
-- 15 дек 2015, 13:29 --Величина порядка

выглядит подозрительно близкой к границе машинной точности. И можно предположить, что правильный ответ мог бы дать А.С.Пушкин, у которого, как известно, вся математика заканчивалась нулём. В том смысле правильный, что при вычислениях по данной формуле без машинных ошибок, округления и т.п. должен был бы получиться 0. А поскольку у нас арифметика с конечной точностью, корни квадратные считаются по приближённым формулам и т.п., расчёт по данной формуле даёт не 0, а число, к нулю близкое. Но в другом смысле это ответ неправильный, даже при абсолютной точности. Правильный, или точнее, близкий к правильному дала Matematica (насколько близкий - не знаю, зависит от числа узлов и применяемой формулы, но думаю, что относительная погрешность вряд ли больше

). Что дал Ваш третий подход - полагаю, там тоже "околоноля", но поскольку иные ошибки округления, не такое "околоноля", как в первом подходе к снаряду.
А квадратура Гаусса, она работает для порядка

, то есть для третьей степени. А у Вас?