2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Приближенное значение корня степени n из числа
Сообщение24.11.2015, 23:51 
Есть ли какой-то максимально простой алгоритм, дающий на выходе приближенное значение корня степени $n$?

Например, чтобы извлекать быстро корни из натуральных чисел, с точностью до сотых долей.

Знаю, что есть формула $\displaystyle\sqrt[n]{1+x}\approx 1+\frac{x}{n}$, она же работает при маленьких $x$.

Где-то давно читал, что как-то можно подгонять к этой формуле, обойдя ограничение $x\to 0$. Но как? (пока что не получается вспомнить)

Есть ли еще какие-то хорошие (быстрые) способы?

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение24.11.2015, 23:58 
toreto в сообщении #1076433 писал(а):
Знаю, что есть формула $\displaystyle\sqrt[n]{1+x}\approx 1+\frac{x}{n}$, она же работает при маленьких $x$.

Где-то давно читал, что как-то можно подгонять к этой формуле, обойдя ограничение $x\to 0$. Но как? (пока что не получается вспомнить)
Вынести в качестве множителя близкое к подкоренному число, корень из которого известен. Например, что-нибудь в таком роде
$$
\sqrt{27} = \sqrt{\frac{25 \cdot 27}{25}} = 5 \,\sqrt{1+\frac{2}{25}} = \dots
$$

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение25.11.2015, 15:38 
Аватара пользователя
А что нужно? В уме, на компьютере, скажем, на сигнальном процессоре без развитой арифметики, на калькуляторе?
Общий подход - через логарифмы. $\sqrt[n]{x}=e^{\ln x/n}$. В стандарте IEEE машинной арифметики аппаратный логарифм есть, и работает быстро.
Можно формулу Герона обобщить на корни более высокой степени. Собственно, это применение метода Ньютона решения нелинейного уравнения
$f(x)=x^n=a$
$x_{k+1}=x_k-\frac{f(x_k)-a}{f'(x_k)}=\frac{(n-1)x_k}{n}+\frac {a}{nx_k^{n-1}}$ начав с какого-то подходящего $x_0$
Можно разделить на близкое число Z, корень из которого Q известен, а затем использовать $\sqrt[n]{X}=\sqrt[n]{Z(1+\frac{X-Z}Z)}=\sqrt[n]{Z(1+d)}=Q\sqrt[n]{1+d}\approx Q(1+\frac d n)$
Первый способ для реализации на PC и т.п. машинах с нормальной арифметикой, второй для расчётов на калькуляторе, сигнальном процессоре и т.п., где 4 действия есть, а логарифмов нету, третий для прикидок в уме (включая "кидание понтов" а ля "Фейнман в кабаке морально унижает японца с калькулятором", но и для "грубых инженерных оценок" тоже).

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение27.11.2015, 14:45 
Спасибо, имелось ввиду в уме.

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение27.11.2015, 18:15 
Аватара пользователя
Pphantom в сообщении #1076435 писал(а):
Вынести в качестве множителя близкое к подкоренному число, корень из которого известен.

Для этого, при расчётах в уме, очень полезно заучить таблицу умножения где-то до 30-32. Сам её не знаю :-)

-- 27.11.2015 18:22:38 --

Всего лишь, таблицу квадратов. Это проще.

А потом можно и кубов.

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение27.11.2015, 20:20 
Аватара пользователя

(Оффтоп)

Да... Помнится, я в школе на спор научился вычислять в уме корни квадратные с четырьмя знаками. По степени полезности этот мой талант находился между двумя другими - задерживать дыхание и шевелить ушами...

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение27.11.2015, 21:22 
Аватара пользователя
Евгений Машеров в сообщении #1077447 писал(а):
По степени полезности этот мой талант находился между двумя другими - задерживать дыхание и шевелить ушами...

Я бы не сказал. Зависит от области. Например, хоть я и не умею считать квадратные корни, но вообще навыки быстрого приближённого счёта "в уме" много мне помогли в физике.

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение27.11.2015, 21:45 
Аватара пользователя
Евгений Машеров в сообщении #1077447 писал(а):
вычислять в уме корни квадратные ... задерживать дыхание и шевелить ушами...
Уж очень интересы были схожи :) Так вот я и ушами на спор научился -- вычитал в книжке лет в 9-10, что это мышцы и их можно развить. Это был ценный опыт -- понять, что мозг можно перевести из состояния "полного непонимания, как сделать", в состояние "получается автоматически".

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение27.11.2015, 21:47 

(Оффтоп)

Евгений Машеров в сообщении #1077447 писал(а):
По степени полезности этот мой талант находился между двумя другими - задерживать дыхание и шевелить ушами...
Задерживать дыхание, как понимаю, оценка верхняя, а не нижняя? :-) Это же выглядит довольно практичным навыком!

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение28.11.2015, 00:03 
Ну можно и с бумажкой, но когда компа и калькулятора нет под рукой, например -- но неплохо бы знать как быренько прикинуть, например, корень кубический из двух...итп)

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение28.11.2015, 01:16 
Аватара пользователя
Корень кубический из двух полезно знать наизусть.

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение28.11.2015, 02:55 
Аватара пользователя
Munin в сообщении #1077529 писал(а):
Корень кубический из двух полезно знать наизусть.
Только если часто считаешь на декартовой сетке...

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение28.11.2015, 09:45 
Аватара пользователя
Munin в сообщении #1077474 писал(а):
Евгений Машеров в сообщении #1077447 писал(а):
По степени полезности этот мой талант находился между двумя другими - задерживать дыхание и шевелить ушами...

Я бы не сказал. Зависит от области. Например, хоть я и не умею считать квадратные корни, но вообще навыки быстрого приближённого счёта "в уме" много мне помогли в физике.


Ну, я б сказал так:
Вообще принципы приближённого счёта - фундаментальное знание.
Умение "прикидывать" с точностью 1-2 знака и оценкой погрешности - полезный навык.
А вот расчёт в уме одной-единственной функции, но с четырьмя знаками, при том, что уже были калькуляторы с корнем ("инженерные" и "расширенные экономические"), а уж таблицы были массовым продуктом - это чистое умение показывать фокусы.

-- 28 ноя 2015, 09:48 --

arseniiv в сообщении #1077486 писал(а):

(Оффтоп)

Евгений Машеров в сообщении #1077447 писал(а):
По степени полезности этот мой талант находился между двумя другими - задерживать дыхание и шевелить ушами...
Задерживать дыхание, как понимаю, оценка верхняя, а не нижняя? :-) Это же выглядит довольно практичным навыком!


Просто задержка "на суше" - чистый фокус (хотя, сбереги я этот навык доныне, мог бы поставить на себе интересные эксперименты, скажем, в связи с ЭЭГ), а вот под водой... Хотя умение пронырнуть 25 метров бассейна тоже практически мне не понадобилось, но возможности его применения уже просматриваются.

-- 28 ноя 2015, 10:08 --

Munin в сообщении #1077529 писал(а):
Корень кубический из двух полезно знать наизусть.


Для квадратного из двух помню мнемонику:
Цитата:
Я Маша, я дура, но я вот взяла корень из двух.

Для квадратного из трёх 1.7320508075688772935... можно придумать:
Цитата:
И монтёру оно не перегрузка - знать квадратный вольтажа

(имеется в виду соотношение между линейным и фазным в электротехнике)
А для кубического такая есть?

-- 28 ноя 2015, 10:35 --

Главка из Гарднера
http://stepanov.lk.net/mnemo/mg21.html

Попробую придумать мнемонику:
1.25992104989
Цитата:
И ты, детка, прекрасно вспомнишь: Оп! и кубический трёх получается отличный роскошный

(здесь и выше число 0 кодируется десятибуквенным слово, а ля телефон с диском...)

 
 
 
 Re: Приближенное значение корня степени n из числа
Сообщение28.11.2015, 20:48 
Аватара пользователя
Евгений Машеров в сообщении #1077597 писал(а):
А вот расчёт в уме одной-единственной функции, но с четырьмя знаками, при том, что уже были калькуляторы с корнем ("инженерные" и "расширенные экономические"), а уж таблицы были массовым продуктом - это чистое умение показывать фокусы.

Ну разумеется, полезнее знать несколько функций, хотя бы и не с четырьмя знаками!
А ещё полезно уметь эти четыре знака дорассчитать при необходимости.

В "Вы, конечно, шутите, мистер Фейнман!" есть целая глава про счёт в уме.

 
 
 [ Сообщений: 14 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group