2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Доказать равенство
Сообщение10.11.2015, 14:26 
Sonic86 в сообщении #1072000 писал(а):
В принципе можно было еще проще: сравнить $b_{n+1}$ и $b_n$

Мне кажется не только проще, но и желательнее, так как это заодно позволяет доказать что последовательность вообще сходится.

 
 
 
 Re: Доказать равенство
Сообщение10.11.2015, 14:50 

(Slow)

Slow в сообщении #1072011 писал(а):
Sonic86 в сообщении #1072000 писал(а):
В принципе можно было еще проще: сравнить $b_{n+1}$ и $b_n$

Мне кажется не только проще, но и желательнее, так как это заодно позволяет доказать что последовательность вообще сходится.
Да, так лучше. Я так в универе его решал, а теперь вот подзабыл - тупею. Хорошо, что вспомнил хоть.

 
 
 
 Re: Доказать равенство
Сообщение10.11.2015, 15:00 
Аватара пользователя
Sonic86 в сообщении #1072000 писал(а):
Значит $b_{2n}=\operatorname{const}\frac{b_n}{a^n}$. Сейчас видите что-нибудь?

(hint)

Если $A_n=B_n$, то $f(A_n)=f(B_n)$

Не не вижу, но предполагаю, что имеется ввиду следующее:

Если $\mathop {\lim }\limits_{n \to \infty } \frac{{{b_{2n}}}}{{{b_n}}} = 0$, то и $\mathop {\lim }\limits_{n \to \infty } {b_{2n}} = 0$, только если существует конечный предел для варианты $b_n$.

Т.к. $\frac{{{b_{2n}}}}{{{b_n}}} = \frac{{{2^k}}}{{{a^n}}}$ и $2^k$ константа, то $\mathop {\lim }\limits_{n \to \infty } \frac{{{2^k}}}{{{a^n}}} = 0$

Осталось показать, что $b_n$ имеет конечный предел:

${b_n} = \frac{{{n^k}}}{{{a^n}}} > 0$

$\frac{{{b_n}}}{{{b_{n + 1}}}} = \frac{{{n^k} \cdot {a^{n + 1}}}}{{{a^n} \cdot {{\left( {n + 1} \right)}^k}}} = \frac{{{n^k}}}{{{{\left( {n + 1} \right)}^k}}} \cdot a = \left( {1 + \frac{n}{k} + ...} \right) \cdot a > 1$

Откуда ${b_{n + 1}} < {b_n}$, т.е. варианта убывает, ограничена снизу нулем и имеет конечный предел.

А раз $\mathop {\lim }\limits_{n \to \infty } {b_{2n}} = 0$, то и $\mathop {\lim }\limits_{n \to \infty } \frac{{{n^k}}}{{{a^n}}} = 0$

Правильно/Нет?

 
 
 
 Re: Доказать равенство
Сообщение10.11.2015, 15:21 
Аватара пользователя
Cynic в сообщении #1072024 писал(а):
$ \frac{{{n^k}}}{{{{\left( {n + 1} \right)}^k}}} \cdot a = \left( {1 + \frac{n}{k} + ...} \right) \cdot a > 1$

Вообще-то коэффициент при $a$ в левой части меньше 1...

В чем тут идея? При переходе от $b_n$ к $b_{n+1}$ элемент последовательности умножается на коэффициент $ \frac{(n+1)^k}{n^ka}$, чуть больший, чем $\frac1a$. То есть последовательность ведет себя как прогрессия со знаменателем, чуть большим (а в пределе равном) $1/a$. Вот это "чуть больше" и надо правильно учесть.

 
 
 
 Re: Доказать равенство
Сообщение10.11.2015, 17:21 
Аватара пользователя
provincialka в сообщении #1072032 писал(а):
Вообще-то коэффициент при $a$ в левой части меньше 1...


:oops:

provincialka в сообщении #1072032 писал(а):
В чем тут идея? При переходе от $b_n$ к $b_{n+1}$ элемент последовательности умножается на коэффициент $ \frac{(n+1)^k}{n^ka}$, чуть больший, чем $\frac1a$. То есть последовательность ведет себя как прогрессия со знаменателем, чуть большим (а в пределе равном) $1/a$. Вот это "чуть больше" и надо правильно учесть.


Всё сдаюсь. Понятно, что варианта убывает. Понятно, что предел есть. Как показать не понимаю. :facepalm:

 
 
 
 Re: Доказать равенство
Сообщение10.11.2015, 17:28 
Аватара пользователя
Тут два шага.
1. Пусть, начиная с некоторого $n_0$ имеем $b_{n+1}<b_n\cdot q$ для некоторого $q<1$. Что можно сказать о поведении $b_n$? С чем эту последовательность можно сравнить?

2. У вас при $n>n_0$ отношение членов последовательности меньше, чем $ \frac{(n_0+1)^k}{n_0^ka}=q_0$. Можно ли добиться того, чтобы это число было строго меньше 1?

 
 
 
 Re: Доказать равенство
Сообщение11.11.2015, 11:50 
Аватара пользователя
provincialka в сообщении #1072068 писал(а):
Тут два шага.
1. Пусть, начиная с некоторого $n_0$ имеем $b_{n+1}<b_n\cdot q$ для некоторого $q<1$. Что можно сказать о поведении $b_n$?

Что она убывает

provincialka в сообщении #1072068 писал(а):
С чем эту последовательность можно сравнить?

С убывающей геометрической прогрессией

provincialka в сообщении #1072068 писал(а):
2. У вас при $n>n_0$ отношение членов последовательности меньше, чем $ \frac{(n_0+1)^k}{n_0^ka}=q_0$. Можно ли добиться того, чтобы это число было строго меньше 1?

Можно если $\frac{{{{(n + 1)}^k}}}{{{n^k}}} < a$ или $a > 1$ (по условию так и есть). Можно конечно и более точное выражение для $a$ написать.
Но я чего то всё равно не понимаю куда вы ведёте?

 
 
 
 Re: Доказать равенство
Сообщение11.11.2015, 14:33 
Cynic в сообщении #1072235 писал(а):
Но я чего то всё равно не понимаю куда вы ведёте?

Cynic в сообщении #1072024 писал(а):
убывает, ограничена снизу нулем и имеет конечный предел.

 
 
 
 Re: Доказать равенство
Сообщение11.11.2015, 16:37 
Аватара пользователя
На самом деле в общем случае тот факт, что варианта убывает и ограничена снизу нулем ещё не означает что её предел ноль. Например, варианта ${2^{\frac{1}{n}}}$, тоже убывает и тоже ограничена снизу нулем, просто это не точная нижняя её граница. Для варианты ${2^{\frac{1}{n}}}$ видно, что 1 это её точная нижняя граница, поэтому и предел 1, но есть варианты для которых всё не так очевидно.

Хотя в данном случае согласен, варианта будет убывать до нуля.

 
 
 
 Re: Доказать равенство
Сообщение11.11.2015, 17:09 
Cynic в сообщении #1072310 писал(а):
На самом деле в общем случае тот факт, что варианта убывает и ограничена снизу нулем ещё не означает что её предел ноль.
Не означает. Это означает другое: что предел ее существует, что позволяет невозбранно брать от преобразований последовательности оператор $\lim\limits_{n\to\infty}$.

 
 
 
 Re: Доказать равенство
Сообщение11.11.2015, 17:35 
Кстати если вы в сообщении
Cynic в сообщении #1072024 писал(а):
Если $\mathop {\lim }\limits_{n \to \infty } \frac{{{b_{2n}}}}{{{b_n}}} = 0$, то и $\mathop {\lim }\limits_{n \to \infty } {b_{2n}} = 0$

от предела дроби перешли к дроби из двух пределов, то это не верно.

 
 
 
 Re: Доказать равенство
Сообщение11.11.2015, 18:51 
Аватара пользователя
Cynic в сообщении #1072310 писал(а):
в общем случае тот факт, что варианта убывает и ограничена снизу нулем ещё не означает что её предел ноль.

Зато сверху она ограничена убывающей геометрической прогрессией. Которая стремится к 0.
Только нужно убедиться, что она именно убывающая, для этого нужно взять достаточно большое $n$.

 
 
 
 Re: Доказать равенство
Сообщение11.11.2015, 18:54 
Аватара пользователя
Sonic86 в сообщении #1072319 писал(а):
Не означает. Это означает другое: что предел ее существует, что позволяет невозбранно брать от преобразований последовательности оператор $\lim\limits_{n\to\infty}$.

Согласен.
Я так понимаю, что тот-же способ можно использовать и для доказательства $\mathop {\lim }\limits_{n \to \infty } \frac{{{a^n}}}{{n!}} = 0$ :

${x_n} = \frac{{{a^n}}}{{n!}}$

$\frac{{{x_{n + 1}}}}{{{x_n}}} = \frac{{{a^{n + 1}} \cdot n!}}{{{a^n} \cdot \left( {n + 1} \right)!}} = \frac{a}{{n + 1}}$

$\frac{a}{{n + 1}} < 1$

Последнее неравенство выполняется при $a < n + 1$. Соответственно, как только $n > a - 1$:
При $a \geqslant 0$, и $a < 0$ и четном $n$, $x_n$ > 0 и убывает, а при $a < 0$ и НЕ четном $n$, $x_n$ < 0 и возрастает. Откуда $\mathop {\lim }\limits_{n \to \infty } \frac{{{a^n}}}{{n!}} = 0$.

 
 
 
 Re: Доказать равенство
Сообщение11.11.2015, 20:55 
Аватара пользователя
Slow в сообщении #1072325 писал(а):
Кстати если вы в сообщении
Cynic в сообщении #1072024 писал(а):
Если $\mathop {\lim }\limits_{n \to \infty } \frac{{{b_{2n}}}}{{{b_n}}} = 0$, то и $\mathop {\lim }\limits_{n \to \infty } {b_{2n}} = 0$

от предела дроби перешли к дроби из двух пределов, то это не верно.

Была у меня мысль найти предел варианты $\frac{{{n^k}}}{{{a^n}}}$ ($a > 0$), как вы говорите:

${x_n} = \frac{{{n^k}}}{{{a^n}}}$, ${y_n} = {n^k}$

$\mathop {\lim }\limits_{n \to \infty } \frac{{{x_n}}}{{{y_n}}} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{{{a^n}}} = 0$

$\mathop {\lim }\limits_{n \to \infty } \frac{{{x_n}}}{{{y_n}}} = \frac{{\mathop {\lim }\limits_{n \to \infty } {x_n}}}{{\mathop {\lim }\limits_{n \to \infty } {y_n}}} = 0$

Поскольку ${y_n} \to \infty$, то $\mathop {\lim }\limits_{n \to \infty } {x_n} = 0$.

Потом я правда рассмотрел другую варианту стремящуюся к нулю и понял, что так делать нельзя. Правда так и не понял почему, выражения вроде везде тождественные.

 
 
 
 Re: Доказать равенство
Сообщение11.11.2015, 23:21 
Мое сообщение было к тому что $\mathop {\lim }\limits_{n \to \infty } \frac{{{b_{2n}}}}{{{b_n}}} \neq \frac{{\mathop {\lim }\limits_{n \to \infty } {b_{2n}}}}{{\mathop {\lim }\limits_{n \to \infty } {b_n}}}$
Потому что вот это:
Cynic в сообщении #1072423 писал(а):
$\mathop {\lim }\limits_{n \to \infty } \frac{{{x_n}}}{{{y_n}}} = \frac{{\mathop {\lim }\limits_{n \to \infty } {x_n}}}{{\mathop {\lim }\limits_{n \to \infty } {y_n}}}$

верно не всегда

 
 
 [ Сообщений: 34 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group