lim, бутылка гомеоморфна связной сумме двух
Можно показать, что

Также можно показать, что в случае

справедлива такая формула:

Честно --- вообще ничего не понял. Пока этим ещё не на столько сильно занимаюсь. Да и вопрос в принципе-то в несколько другом: как показать их негомеоморфность?
Если оттолкнуться от топологических инвариантов (что предложили выше), то нужно показать (это пока то, что я понимаю), что у одной поверхности есть такое множество точек

, что его индекс равен

, а на другой поверхности множества с таким индексом нет.
Или (если Вы --- тополог - подскажите) например разрезать и показать это через неориентируемость/ориентируемость получившихся поверхностей?
Спасибо.