то вроде бы видно, что
Не совсем.
Цитата:
хочется оценить
. Но можно ли?
Есть неравенство в обратную сторону
Тут технически сложно будет так в лоб. Я бы заметил, что данный функционал по смыслу мало отличается от квадрата нормы, а именно, это квадрат нормы проекции вектора
на подпространство , в котором все нечетные координаты равны 0, ну и ссылаться на непрерывность нормы и свойства непрерывных функций вообще
Да, спасибо, про квадрат забыл.
В принципе вот такое на ум пришло. Возьмем отображение
, которое переводит все последовательности в последовательности с нулями на нечетных позициях, они тоже будут принадлежать
. Такое отображение вроде бы непрерывно.
. И тогда нужный функционал будет композицией непрерывных функций
и сам будет непрерывен. Вроде так.