2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Портим изотопическую инвариантность
Сообщение16.07.2015, 17:36 
Аватара пользователя


22/10/08
1286
Хорошо известно, что если в уравнении Дирака в спиноре обнулить одну компоненту, а это происходит при устремлении скорости света в бесконечность, то ожидаемо получится нерелятивистский предел - уравнение Паули. Вылезем теперь из лоренцевых групп и спиноров в унитарную группу и изопространство. Рассмотрим $SU(2)$ изоспинор, например дублет нуклонов $(p,n)$ протон и нейтрон и попробуем обнулить или сделать сильно малой $n/p<<1$, скажем, нейтронную компоненту. Есть ли у этого предела шанс иметь некую физическую интерпретацию, и что за параметр при этом устремляется к нулю? Если рассмотреть дублет лептонов электрон и нейтрино, то не значит ли уменьшение нейтронной компоненты уменьшение вероятности нахождения лептона в нейтринном состоянии? Что за параметр за это отвечает?

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение27.07.2015, 12:49 
Аватара пользователя


04/06/14
80
ИгорЪ в сообщении #1037763 писал(а):
Хорошо известно, что если в уравнении Дирака в спиноре обнулить одну компоненту, а это происходит при устремлении скорости света в бесконечность, то ожидаемо получится нерелятивистский предел - уравнение Паули. Вылезем теперь из лоренцевых групп и спиноров в унитарную группу и изопространство. Рассмотрим $SU(2)$ изоспинор, например дублет нуклонов $(p,n)$ протон и нейтрон и попробуем обнулить или сделать сильно малой $n/p<<1$, скажем, нейтронную компоненту. Есть ли у этого предела шанс иметь некую физическую интерпретацию, и что за параметр при этом устремляется к нулю? Если рассмотреть дублет лептонов электрон и нейтрино, то не значит ли уменьшение нейтронной компоненты уменьшение вероятности нахождения лептона в нейтринном состоянии? Что за параметр за это отвечает?

Зачем вы хотите испортить изотопическую инвариантность? Из вредности?
Всякая аналогия между пространственно-временными симметриями (группа Лоренца) и внутренними симметриями есть apriori хромая аналогия. Дело в том, что эти симметрии не допускают описания на равных основаниях. Так, в середине шестидесятых годов прошлого столетия появилась идея об объединении пространственно-временных симметрий и внутренних симметрий в рамках единой теоретической схемы. В результате проведенных исследований выяснилось, что такое объединение возможно только в сильно усеченной форме прямого произведения $G=P\otimes S$, где $G$ -- произвольная группа Ли, $P$ -- группа Пуанкаре, $S$ -- группа внутренних симметрий, а также прямой суммы алгебр $l=p\oplus s$, где $l$, $p$ и $s$ соответственно алгебры групп $G$, $P$ и $S$. Ограничения $l=p\oplus s$ и $G=P\otimes S$ на объединение пространства-времени и внутренних симметрий были сформулированы в виде так называемых no-go теорем (теорем запрета). Одной из наиболее известных no-go теорем является теорема Коулмена-Мандулы (Coleman S., Mandula J. Phys. Rev. 1967. V.159. P.1251--1256.), где группа $G$ понимается как группа симметрии $S$-матрицы. Теорема Коулмена-Мандулы утверждает, что группа $G$ с необходимостью является локально изоморфной прямому произведению группы внутренних симметрий и группы Пуанкаре, при этом теорема перестает быть истинной, если локальный изоморфизм ($G\simeq P\otimes S$) заменить глобальным изоморфизмом. В 1966г. Пайс (Pais A. Rev. Mod. Phys. 1966. V.38. P.215—255) писал: <<Существуют ли перед теоремами запрета какие-либо альтернативы ситуации: группа внутренних симметрий$\otimes$группа Пуанкаре?>>.
Кстати, этот вопрос Пайса до сих пор остается открытым…

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение01.08.2015, 09:33 
Аватара пользователя


22/10/08
1286
КМ теорему, как мне помнится, можно обойти суперсимметрией, но это немного не в тему вопроса.
Я "из вредности" могу предположить, что изотопические группы могут быть посложнее, чем стандартные $SU(2), SU(3)...$ - вот суть вопроса. Какой в этом смысл я не знаю, а плохая аналогия с пространственной симметрией предложена просто как хоть какая нибудь зацепка на возможные дискуссии. Например , можно предположить что "изотопический аналог скорости света" - температура. Тогда одна компонента дублета пропадает при большой/маленькой температуре.

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение01.08.2015, 14:44 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ИгорЪ в сообщении #1041924 писал(а):
Например , можно предположить что "изотопический аналог скорости света" - температура.

Такие предположения желательно делать хоть как-то содержательно.

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение01.08.2015, 17:26 
Аватара пользователя


13/08/13

4323

(Оффтоп)

ИгорЪ
Откуда у вас такая тяга все релятивистское выродить в галилеевское? :mrgreen:

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение03.08.2015, 09:56 
Аватара пользователя


22/10/08
1286
Sicker в сообщении #1042036 писал(а):

(Оффтоп)

ИгорЪ
Откуда у вас такая тяга все релятивистское выродить в галилеевское? :mrgreen:

Дык наши любимые Стандартная и Космологические модели вдоль и поперек с испорченными симметриями, :D , наш мир глубоко подпорчен!
Munin в сообщении #1041989 писал(а):
ИгорЪ в сообщении #1041924 писал(а):
Например , можно предположить что "изотопический аналог скорости света" - температура.

Такие предположения желательно делать хоть как-то содержательно.

Под содержательностью вы понимаете мотивировку?

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение03.08.2015, 14:49 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ИгорЪ в сообщении #1042333 писал(а):
Под содержательностью вы понимаете мотивировку?

Нет. Хотя бы некоторое использование того, что принято называть температурой.

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение04.08.2015, 11:26 
Аватара пользователя


22/10/08
1286
Пусть лептонный дублет есть нечто вроде $$\begin{pmatrix}
 e   \\
(T/m) \nu   \\
  
\end{pmatrix}$$ где $T$ температура, а $m$ - масса, например электрона, для безразмерности компонент. Тогда можно говорить, что после понижения температуры далеко ниже значения массы электрона, нейтринная компонента стала пренебрежимо малой и когда мы регистрируем лептон, он с вероятностью почти 1 является электроном.
Я понимаю , что это спекуляция, но мы ведь в дискуссионной ветке?

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение04.08.2015, 11:42 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ИгорЪ в сообщении #1042593 писал(а):
Пусть лептонный дублет есть нечто вроде $$\begin{pmatrix}
e   \\
(T/m) \nu   \\
 
\end{pmatrix}$$ где $T$ температура

Интересно, и по каким причинам он может быть таким?

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение05.08.2015, 10:04 
Аватара пользователя


22/10/08
1286
Munin в сообщении #1042599 писал(а):
ИгорЪ в сообщении #1042593 писал(а):
Пусть лептонный дублет есть нечто вроде $$\begin{pmatrix}
e   \\
(T/m) \nu   \\
 
\end{pmatrix}$$ где $T$ температура

Интересно, и по каким причинам он может быть таким?

Знал бы прикуп жил бы в Сочи. А по каким причинам в СТО 4-вектор имеет вид $\binom{ct}{x}$ ? Тайна веков. Но мир описывает.

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение05.08.2015, 13:06 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ИгорЪ в сообщении #1042823 писал(а):
Знал бы прикуп жил бы в Сочи.

Вот почему температура входит в хиггсовский потенциал как
$$V(\phi,T)\approx\dfrac{1}{2}(-\mu_h^2+cT^2)\phi^2-ET\phi^3+\dfrac{\lambda}{4}\phi^4$$ - это понятно, это следует из термальной КТП. А вот почему она входит в ваш дублет - никак не выглядит связаным с понятием "температура".

Вы фантазируете, как будто у этого слова нет никакого смысла, кроме феноменологического, в то время как это далеко не так.

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение07.08.2015, 09:07 
Аватара пользователя


22/10/08
1286
Теория температурной КТП даёт температуру в лагранжиан, но увы не в отдельную компоненту поля. Вот и приходится феноменологизировать... Да и кроме температуры полно параметров, энергия, например.

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение07.08.2015, 09:56 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ИгорЪ в сообщении #1043200 писал(а):
Теория температурной КТП даёт температуру в лагранжиан, но увы не в отдельную компоненту поля.

Ну вот. Так что, ваше предложение не проходит. По определению температуры.

ИгорЪ в сообщении #1043200 писал(а):
Да и кроме температуры полно параметров, энергия, например.

Предложите что-то - обсудим это.

 Профиль  
                  
 
 Re: Портим изотопическую инвариантность
Сообщение17.10.2016, 20:28 
Аватара пользователя


14/11/12
1367
Россия, Нижний Новгород
Ну, наверное, можно так попробовать:
$$
d\tau^2 = dt^2 - \frac{1}{c^2} \gamma_{i j} dx^i dx^j  - \frac{1}{\tilde{c}^2} h_{\alpha \beta} dz^{\alpha} dz^{\beta}.
$$
здесь:

$x^i$ и $\gamma_{i j}$ - координаты и метрика (обычного трёхмерного) пространства, $c$ - обычная скорость света;

$z^{\alpha}$ и $h_{\alpha \beta}$ - координаты и метрика группового пространства $SU(2)$, $\tilde{c}$ - некоторая константа играющая ту же роль в групповом пространстве, какую в обычном пространстве играет константа $c$;

$d\tau^2$ - метрика объединённого мирового многообразия.

Теперь надо константу $\tilde{c}$ засунуть в компоненты изотопического дублета так, чтобы при $\tilde{c} \to \infty$ одна из компонент стремилась к нулю...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 14 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group