Долго смотрела вчера на полученные потенциальные паттерны для КПППЧ длины 17
и... увидела следующее: все разности между соседними простыми числами в этих паттернах
кратны 6.
Например, в этом паттерне
Код:
0 6 24 36 66 84 90 114 120 126 150 156 174 204 216 234 240
разности между соседними числами:
Код:
6, 18, 12, 30, 18, 6, 24, 6, 6, 24, 6, 18, 30, 12, 18, 6
Стала смотреть паттерны для всех КПППЧ нечётной длины, увидела, что во всех паттернах этих КПППЧ то же самое!
(Паттерны для КПППЧ нечётной длины)
Код:
k=3
47: 0 6 12
k=5
18713: 0 6 18 30 36
k=7
683747: 0 12 30 36 42 60 72
k=9
98303867: 0 6 30 36 60 84 90 114 120
1480028129: 0, 12, 24, 30, 42, 54, 60, 72, 84
k=11
60335249851: 0 6 18 30 90 108 126 186 198 210 216
1169769749117: 0, 60, 72, 84, 90, 102, 114, 120, 132, 144, 204
660287401247651: 0, 6, 30, 42, 60, 66, 72, 90, 102, 126, 132
k=13
1169769749111: 0 6 66 78 90 96 108 120 126 138 150 210 216
660287401247633: 0 18 24 48 60 78 84 90 108 120 144 150 168
k=15
3945769040698829: 0 12 18 42 102 138 180 210 240 282 318 378 402 408 420
4956528381450799: 0 18 60 90 132 180 222 240 258 300 348 390 420 462 480
5263258173125093: 0 60 66 78 120 126 168 198 228 270 276 318 330 336 396
5348080416833681: 0 18 30 48 60 66 90 108 126 150 156 168 186 198 216
5531524424792777: 0 12 36 66 102 162 180 186 192 210 270 306 336 360 372
5616626582973173: 0 54 60 84 144 150 174 180 186 210 216 276 300 306 360
потенциальный паттерн:
0 6 24 30 54 66 84 90 96 114 126 150 156 174 180
k=25 (потенциальные паттерны)
0 30 126 156 180 210 240 294 306 324 330 360 390 420 450 456 474 486 540 570 600 624 654 750 780
0 36 78 120 156 240 276 318 330 360 366 396 408 420 450 456 486 498 540 576 660 696 738 780 816
0 30 60 90 198 210 228 270 336 366 390 396 408 420 426 450 480 546 588 606 618 726 756 786 816
0 78 84 90 120 168 198 204 210 288 330 408 414 420 498 540 618 624 630 660 708 738 744 750 828
0 30 84 90 96 114 120 126 180 210 330 414 420 426 510 630 660 714 720 726 744 750 756 810 840
0 42 90 120 132 198 210 240 288 300 330 342 420 498 510 540 552 600 630 642 708 720 750 798 840
0 90 132 210 216 222 300 306 330 342 390 420 426 432 462 510 522 546 552 630 636 642 720 762 852
0 12 90 102 132 222 252 264 300 312 342 354 432 510 522 552 564 600 612 642 732 762 774 852 864
0 12 132 210 222 252 264 300 312 342 390 402 432 462 474 522 552 564 600 612 642 654 732 852 864
0 60 126 186 210 228 288 330 336 360 390 420 438 456 486 516 540 546 588 648 666 690 750 816 876
0 30 42 72 120 150 198 228 240 270 330 372 450 528 570 630 660 672 702 750 780 828 858 870 900
0 30 72 102 120 150 168 198 240 270 330 402 450 498 570 630 660 702 732 750 780 798 828 870 900
0 42 126 210 252 270 312 330 372 390 396 432 456 480 516 522 540 582 600 642 660 702 786 870 912
0 42 60 102 186 246 270 312 330 372 390 432 456 480 522 540 582 600 642 666 726 810 852 870 912
0 42 90 132 210 246 252 330 336 372 420 450 456 462 492 540 576 582 660 666 702 780 822 870 912
0 30 42 54 84 180 210 222 234 264 420 450 462 474 504 660 690 702 714 744 840 870 882 894 924
0 84 102 120 204 210 294 312 330 360 414 444 462 480 510 564 594 612 630 714 720 804 822 840 924
0 30 120 210 240 264 294 342 372 384 420 450 462 474 504 540 552 582 630 660 684 714 804 894 924
0 66 90 150 156 210 216 276 300 318 366 408 468 528 570 618 636 660 720 726 780 786 846 870 936
0 30 72 102 162 192 252 282 324 330 354 402 492 582 630 654 660 702 732 792 822 882 912 954 984
0 84 120 162 204 240 282 324 330 360 414 444 492 540 570 624 654 660 702 744 780 822 864 900 984
0 84 150 234 240 252 324 330 402 414 420 480 492 504 564 570 582 654 660 732 744 750 834 900 984
0 36 78 120 156 330 366 408 420 450 456 486 498 510 540 546 576 588 630 666 840 876 918 960 996
0 30 78 108 168 198 258 288 330 336 366 408 498 588 630 660 666 708 738 798 828 888 918 966 996
Так ведь эта закономерность что-то, наверное, может дать для поиска реальных КПППЧ длины 17
Искать надо такие кортежи простых чисел, в которых соседние простые числа отличаются на
,
.
Вот такая характерная особенность симметричных кортежей, и такие кортежи, видимо, встречаются довольно редко.
Посмотрите:
Код:
k=5
18713: 0 6 18 30 36
такой коротенький кортеж, а встретился аж с 18713.
И для сравнения приведу не симметричные кортежи для
с минимальным диаметром:
Код:
100845391935878564991556707107 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56, 62, 66 (30 digits, Feb 2013, Roger Thompson)
11413975438568556104209245223 + d, d = 0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48, 54, 58, 60, 66 (29 digits, Jan 2012, Roger Thompson)
11410793439953412180643704677 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56, 62, 66 (29 digits, Jan 2012, Roger Thompson)
5867208169546174917450987997 + d, d = 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 (28 digits, Mar 2014, Raanan Chermoni & Jaroslaw Wroblewski)
5867208169546174917450987997 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66 (28 digits, Mar 2014, Raanan Chermoni & Jaroslaw Wroblewski)
5621078036155517013724659007 + d, d = 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 (28 digits, Mar 2014, Raanan Chermoni & Jaroslaw Wroblewski)
5621078036155517013724659007 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66 (28 digits, Mar 2014, Raanan Chermoni & Jaroslaw Wroblewski)
4668263977931056970475231217 + d, d = 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 (28 digits, Jan 2014, Raanan Chermoni & Jaroslaw Wroblewski)
4668263977931056970475231217 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66 (28 digits, Jan 2014, Raanan Chermoni & Jaroslaw Wroblewski)
4652363394518920290108071167 + d, d = 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 (28 digits, Jan 2014, Raanan Chermoni & Jaroslaw Wroblewski)
В этих паттернах разности между соседними простыми числами не все кратны 6.
-- Сб авг 01, 2015 08:31:35 --Для начала можно попробовать найти КПППЧ длины 15 с минимальным диаметром по заданному паттерну
Код:
0 6 24 30 54 66 84 90 96 114 126 150 156 174 180
Всё-таки немного покороче кортеж и, к тому же, всего один.
И посмотреть на этом примере, как можно использовать характерную особенность симметричных кортежей нечётной длины.
-- Сб авг 01, 2015 08:40:34 --Как известно, все простые числа, начиная с числа 5, представимы в виде
или
.
Чтобы все разности между соседними простыми числами были кратны 6, надо, чтобы все эти числа были представимы либо только в виде
, либо только в виде
. Смешанные представления не допускаются.