А ответьте мне, пожалуйста, на такой вопрос. Вот есть произвольный треугольник 

 и его копия, полученная сдвигом -- 

. Я всегда был склонен считать, что треугольники 

 и 

 равны. Я ошибался? Если нет, то после таких правильных доказательств даже у меня в голове мутит. А когда я пытаюсь объяснять это школьнику, то сразу начинаю предпочитать неправильное доказательство.
Если писать в том неправильном употреблении слова, которое я тут делал, то равны (т. е. 
конгруэнтны изометричны по-нормальному), но в точном смысле слова не равны, если мы сдвигали, конечно, не на ноль.
Тут дело просто в строгости определений. Если они недостаточно строгие, то правильное доказательство может выглядеть совершенно мистическим, но это не значит, что вина не в определениях. 
 Если он видит 2 совершенно одинаковых треугольника и считает, что эти треугольники останутся равны, "даже если собачью лапу назвать хвостом", то этот кризис нельзя разрушать насильственными мерами.
Вот я как раз считаю, что надо это делать хотя бы на примерах. Согласен, что краткое доказательство надо будет украшать, если до этого база не была построена каким-то другим способом.
Это интересный вопрос преподавания: в обозначении треугольника можно полагать вершины либо множеством, либо упорядоченной последовательностью.
<…>
Аналогично, конечно, требуется относиться к обозначениям отрезков, углов и прочего.
Тут есть довольно неплохой компромисс. Никто не мешает считать многоугольники множествами не только вершин, а всех точек (только рёбер или ещё и внутренних, не важно), но при этом в, например, признаках равенства треугольников говорить о функции 

, сопоставляющей набору вершин треугольник. В общем случае порядок аргументов важен, и при этом мы не вводим лишнюю сущность «треугольник с упорядоченными вершинами». На отрезки и углы тоже распространяется. В сущности, все эти обозначения 
![$\triangle,\angle,[\ldots],(\ldots)$ $\triangle,\angle,[\ldots],(\ldots)$](https://dxdy-03.korotkov.co.uk/f/e/c/1/ec100139a492908c3cf2caaceaed5acc82.png)
 как раз легко и понимаются как просто записи применения таких функций.
(Более абстрактные отношения эквивалентности нарушают это правило, но к ним программа подойдёт позднее.)
Как так? Есть преобразования 

, совместимые с отношением эквивалентности 

 — такие что 

; тождественное отображение и композиция совместимых совместимы, так что среди биекций 

 получается подгруппа всех совместимых с 

 биекций, её-то и выбираем.
Сорри за беспокойство, разобрались :)
Да чего там.
(а не "конгруэнтность", как в Вики -- чур меня, я к этому не призываю :)
Кстати, можно вместо 
конгруэнтны изометричны и 
равны говорить, например, 
равны и 
тождественно равны. Пускай то, что реже там встречается, будет и длиннее!