2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Отображение
Сообщение16.05.2015, 17:49 
Помогите пожалуйста решить задачу об отображении произвольной точки $\mathf{\vec{x}}$, расположенной внутри выпуклого области $\Omega$, заданой $\mathf{N}$-меным многоугольником, в точку $\mathf{\vec{X}}$ выпуклой области $\Theta$, заданной $\mathf{N}$-меным полигоном, $\mathf{i}$-ми ребрами $\mathf{\vec{E}=(\vec{V}_i,\vec{V}_{i+1})}$ которого являются произвольные изевтные выпуклые функции $\mathf{f(t)_i}$. Координаты вершин многоугольника $\mathf{\vec{v}_i}$ и полигона $\mathf{\vec{V}_i}$ исзвестны. Система координат двухмерная. Полезными также будут ссылки на статьи или книги с конкретным (близким) решением. Спасибо.

 
 
 
 Re: Отображение
Сообщение16.05.2015, 19:42 
Аватара пользователя
Если бы «$N$-меным» встретилось один раз, я был бы уверен: просто пропущена буква «р». Но дважды — я уже сомневаюсь: вдруг так надо?
«изевтные выпуклые функции» — это известные?
Чем $N$-мерный полигон отличается от $N$-мерного многоугольника?
Поясните более понятно, как задаются рёбра полигона, зачем они задаются, и почему достаточно задания только рёбер?

 
 
 
 Re: Отображение
Сообщение16.05.2015, 21:27 
Прошу прощения описался $\mathf{N}$-мерные полигон и многоугольник ($\mathf{N}$ вершин) и функции "известные". В указанном случает $\mathf{N}$-мерный многоугольник представляется набором вершин $\mathf{\vec{v}_i}$ и ребер $\mathf{\vec{e}_i = (\vec{v}_i, \vec{v}_{i+1})}$ при $\mathf{i=\overline{1,N}}$ (ребра - прямые линии, т.е. заданы параметрическими уравнениями прямой $\mathf{\vec{f}(x)_i = \vec{v}_i + (\vec{v}_{i+1}-\vec{v}_i)\cdot t}$ при $\mathf{t\in[0,1]}$). Под полигоном (хотя, конечно, не совсем корректно) в данном случае понимается тоже самое, т.е. набор вершин $\mathf{\vec{V}_i}$ и ребер $\mathf{\vec{E}_i = (\vec{V}_i, \vec{V}_{i+1})}$ при одном отличие ребра не прямые линии, а заданы известными выпуклыми функциями, например $\mathf{\vec{f}(x)_i = \left\{
\begin{array}{rcl}
 R_i \cdot \cos(\varphi_i t+\Delta\varphi_i) \\
 R_i \cdot \sin(\varphi_i t+\Delta\varphi_i) \\
\end{array}
\right.}$ при $\mathf{t\in[0,1]}$. Естественно ребра в одном и другом случае не пересекаются, области выпуклые.

-- 16.05.2015, 22:32 --

Ой, опять описался))) не часто набираю на LaTeX и тороплюсь)) функции, конечно не $\mathf{\vec{f}(x)_i $, а $\mathf{\vec{f}_i(t) $.

 
 
 
 Re: Отображение
Сообщение16.05.2015, 21:51 
Аватара пользователя
van341, Вы напомнили где-то прочитанную шутку (только не обижайтесь, а улыбнитесь :-) ). Объявление в газете:
Бсытро и квакчественно наебру лбюой тектс.

Я Вас правильно понял, что всё дело происходит на плоскости, а $N$-мерность означает лишь количество вершин? Да, Вы говорили про двумерные координаты, но привычный смысл $N$-мерности ($N$-мерное пространство) всё-таки пока перетягивает.

 
 
 
 Re: Отображение
Сообщение16.05.2015, 21:57 
:lol: ...
Да все на плоскости, $\mathf{N}$ - число вершин.

 
 
 
 Re: Отображение
Сообщение16.05.2015, 22:55 
Аватара пользователя
Понятно. Вот картинка:
Изображение
Вам надо каждую точку левой фигуры отобразить в точку правой фигуры.
Способ подойдёт не только для выпуклых, но и для звёздных областей.

Внутри каждой фигуры выберем точку, относительно которой она звездная. Назовём эту точку центром. Соединим отрезками центр с вершинами. Эти отрезки разбивают фигуру на $N$ частей, которые назовём секторами. Перенумеруем секторы от $1$ до $N$, обходя их против часовой стрелки. На картинке секторы обеих фигур, имеющие одинаковые номера, обозначены одним цветом.

Задача сводится к отображению каждого сектора в соответствующий сектор.

Введём на каждой фигуре полярные координаты $r, \varphi$ так, чтобы центр имел $r=0$. Тогда $i$-му сектору фигуры соответствует некоторый диапазон углов $\varphi_i \leqslant \varphi \leqslant \varphi_{i+1}$

Дальше Вы и сами догадываетесь.
Угловая координата $\varphi$ переводится линейной функцией в новую угловую координату $\varphi'$.
Радиальная координата $r$ переводится линейной функцией (но уже зависящей от угла) в новую радиальную координату $r'$.

 
 
 
 Re: Отображение
Сообщение16.05.2015, 23:09 
Большое спасибо за подсказку.

 
 
 
 Re: Отображение
Сообщение16.05.2015, 23:22 
Аватара пользователя
Не за что.
Я понимаю, что углы раствора соответствующих секторов не обязательно совпадают. Но если совпадают, можно сделать так, чтобы при отображении менялась только радиальная координата.

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group