Рассмотрела внимательнее, что у меня есть в арсенале для идеальных квадратов 8-го порядка.
Есть даже две общие формулы. Первая формула получена по программе
svb, она была показана в теме
"Магические квадраты". Там обсуждали с
svb непонятный параметр
.
В этой общей формуле имеется 18 свободных переменных из 32 при заданной константе ассоциативности. Ну, так должно быть в любой альтернативной общей формуле.
Вторая формула получена мной решением системы линейных уравнений; она у меня пока не преобразована к привычному виду, в том виде, как выдана онлайн-решателем:
Код:
k = ( r8+ r7+ r6+ r5+ r4+ r3+ r2+ r1)/4,
x1 = r9- r8- r6+ r4+2 r2- r19- r18-2 r17+ r15- r13+ r12+ r11+ r1,
x10 = r9- r8-2 r7- r6- r5- r4+ r19+ r18- r15+ r14+ r13+ r12+ r11 +2 r10- r1,
x11 = r9- r8- r7-2 r6- r5+ r4+ r3+2 r2-2 r19- r18- r17+ r16+ r15 - r14- r13+ r12+2 r11+ r10+ r1,
x12 = r19,
x13 = r9- r6+ r15,
x14 = - r9+ r8+2 r7+2 r6+ r5+ r4+ r2- r19- r18- r17- r13- r12- r11 - r10+ r1,
x15 = r18,
x16 = -2 r9+2 r8+2 r7+3 r6+2 r5- r2+ r19+ r17- r16- r15- r12 -2 r11-2 r10,
x17 = r16,
x18 = - r9+ r8+ r7+ r6+ r5+ r4+ r3+ r2- r16- r14- r13- r12- r11- r10 + r1,
x19 = r14,
x2 = r15,
x20 = r13,
x21 = r12,
x22 = r11,
x23 = r10,
x24 = r9,
x25 = r8,
x26 = r7,
x27 = r6,
x28 = r5,
x29 = r4,
x3 = -2 r9+2 r8+3 r7+3 r6+2 r5- r2+ r19+ r17- r16- r15-2 r12 -2 r11-2 r10,
x30 = r3,
x31 = r2,
x32 = r1,
x4 = r8+ r6- r2+ r18+ r17- r15- r11,
x5 = - r9+ r8+2 r6+ r5- r4- r2+ r19+ r18+ r17-2 r15+ r13- r12- r11,
x6 = r17,
x7 = r3+ r19- r16,
x8 = 2 r9-2 r8-2 r7-4 r6-2 r5+ r4+2 r2-2 r19- r18-2 r17+2 r16 +2 r15+2 r12+3 r11+2 r10,
x9 = - r2+ r17+ r13
Здесь
- константа ассоциативности квадрата;
, где
- магическая константа квадрата.
Очевидно, что в этой формуле так же 18 свободных переменных из 32 при заданной константе ассоциативности. Однако формула резко отличается от формулы, полученной по программе
svb.
Какая из этих двух формул более эффективная? Тут
maxal мог бы дать ответ, но он, похоже, в эту тему вообще не заглядывает (на заданный выше вопрос о последовательности OEIS ответа нет).
Я предпочитаю полученную мной формулу. Сейчас займусь программной реализацией этой формулы.
Далее, уже сейчас сделала шаблон из вычетов по модулю 3 по приведённому в предыдущем посте приближению к решению:
Код:
2 1 2 1 2 1 2 1
1 2 2 1 1 2 2 1
1 2 1 2 1 2 1 2
1 2 2 1 1 2 2 1
2 1 1 2 2 1 1 2
1 2 1 2 1 2 1 2
2 1 1 2 2 1 1 2
2 1 2 1 2 1 2 1
Можно сразу и шаблон использовать в программе, это резко повысит скорость выполнения программы. Но... не даст точного ответа на вопрос о существовании решения.