2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3  След.
 
 Re: Наблюдения к ВТФ
Сообщение21.04.2015, 06:16 


10/08/11
671
Yarkin в сообщении #1006098 писал(а):
Это, вроде, очевидно. Однако, надо доказать.

Уважаемый Yarkin!
Я ценю Ваш юмор. Однако, сомневающийся в иррациональных решений, может сам поискать контрпример.
Но, если серьезно, то в этой теме поиска простого доказательства ВТФ, я не утверждал, что существуют иррациональные и только иррациональные решения, понимая, что доказательство Уайлса не может быть элементом простого доказательства.

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение22.04.2015, 21:24 


16/03/07

823
Tashkent
vasili в сообщении #1001226 писал(а):
Откуда Вы взяли, что числа a, b, c образуют прямоугольный треугольник?
Автор это нигде не утверждает.
venco в сообщении #1006101 писал(а):
Зачем?

lasta в сообщении #1006231 писал(а):
сомневающийся в иррациональных решений, может сам поискать контрпример.

Все верно. Доказательством служат только контрпримеры. Требовать аналитического доказательства в таком случае смешно. Но, в геометрической интерпретации автора никаких противоречий нет. А вот геометрическую интерпретацию контрпримера не изобразить.

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение29.04.2015, 07:04 
Аватара пользователя


12/03/15
7
Барнаул
Степенные функции представляют собой равнообъемные тела, имеющие в основании тела квадраты. Например для n=2 это "стопки" квадратов, для n=3 это "пирамидки" кубов...
Уравнивая тела, для целого $c^2$ должны быть некие $a^2$ и $b^2$. Эти $a$ и $b$ могут быть и не целыми, но катетами прямоугольного треугольника. А транспонирование этой тройки чисел в другую степень приводит к неравенству.

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение02.05.2015, 10:42 


10/08/11
671
gepl39 в сообщении #1009126 писал(а):
Уравнивая тела, для целого $c^2$ должны быть некие $a^2$ и $b^2$. Эти $a$ и $b$ могут быть и не целыми, но катетами прямоугольного треугольника. А транспонирование этой тройки чисел в другую степень приводит к неравенству.

То есть Уравнение Ферма не разрешимо ни в каких числах? И эта тройка $(2, 3, \sqrt[3]{35});\qquad 2^3+3^3=(\sqrt[3]{35})^3$ не существует?
Транспонирование любой тройки решения Уравнения Ферма с одним показателем в УФ с другим показателем всегда приводит к неравенству. Это очевидно. И не дает ни каких противоречий для доказательства ВТФ.

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение02.05.2015, 22:11 


16/03/07

823
Tashkent
lasta в сообщении #1010287 писал(а):
То есть Уравнение Ферма не разрешимо ни в каких числах? И эта тройка $(2, 3, \sqrt[3]{35});\qquad 2^3+3^3=(\sqrt[3]{35})^3$ не существует?

Нужно дать геометрическую интерпретацию этого решения. А пока это равенство $8+27=35$, записанное в ином виде.

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение03.05.2015, 08:41 
Аватара пользователя


22/07/08
1416
Предместья
Yarkin в сообщении #1010552 писал(а):
Нужно дать геометрическую интерпретацию этого решения. А пока это равенство $8+27=35$, записанное в ином виде.

Во-первых: геометрическая интерпретация здесь очевидна - треугольник со сторонами 2, 3 и $\sqrt[3]{35}$. На сторонах треугольника построены кубы, причем сумма объемов двух меньших кубов равна объему большего куба.
Но!
Теперь вопрос к Вам.
Не соблаговолите ли дать геометрическую интерпретацию равенства:
$2^4+3^2=5^2$
и, заодно, пояснить, зачем вообще такая интерпретация нужна?

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение03.05.2015, 16:51 


16/03/07

823
Tashkent
Лукомор в сообщении #1010631 писал(а):
геометрическая интерпретация здесь очевидна - треугольник со сторонами 2, 3 и $\sqrt[3]{35}$. На сторонах треугольника построены кубы, причем сумма объемов двух меньших кубов равна объему большего куба.

Не согласен, ибо с числом 35, стоящим в правой части, проводятся взаимно обратные операции, т. е. его степень равна 1
Лукомор в сообщении #1010631 писал(а):
Не соблаговолите ли дать геометрическую интерпретацию равенства:
$2^4+3^2=5^2$
и, заодно, пояснить, зачем вообще такая интерпретация нужна?

Учитывая, что действительные числа являются частным случаем комплексных, то и Ваш пример и предыдущий, можно интерпретировать только на прямой. Геометрическая интерпретация нужна для практического подтверждения теории.

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение03.05.2015, 20:26 
Аватара пользователя


22/07/08
1416
Предместья

(Оффтоп)

Yarkin в сообщении #1010773 писал(а):
Не согласен, ибо с числом 35, стоящим в правой части, проводятся взаимно обратные операции, т. е. его степень равна 1

Вот по отдельности все слова понятные: степень, число, операции... однако такое причудливое их соединение полностью лишает смысла выражение в целом.
Напоминаю, что в правой части исходного равенства $2^3+3^3=(\sqrt[3]{35})^3$ стоит число
$\sqrt[3]{35}\approx 3.271 \dots$
Из отрезков со сторонами $2, 3, 3.271 \dots$ можно составить треугольник, разумеется остроугольный. На этих сторонах можно построить кубы, вот вам интерпретация... Что не так-то?!


-- Вс май 03, 2015 19:30:00 --

(Оффтоп)

Yarkin в сообщении #1010773 писал(а):
Учитывая, что действительные числа являются частным случаем комплексных, то и Ваш пример и предыдущий, можно интерпретировать только на прямой. Геометрическая интерпретация нужна для практического подтверждения теории.

То-есть, на мой вопрос ответ отрицательный.
Геометрическую интерпретацию выражения $2^4+3^2=5^2$ Вы дать не можете.
Зачем она нужна Вы не знаете.
Я так и думал.

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение04.05.2015, 22:21 


16/03/07

823
Tashkent
Лукомор в сообщении #1010916 писал(а):
(Оффтоп)[/quote
Уже пошли бездоказательные выводы.Я четко сказал, что геометрическая интерпретация этих примеров возможна только на прямой В первом примере сумма. (допустим длин) отрезков 8 и
27 равна 35, а в Вашем примере аналогичная сумма 16 и 9 равна 25. В какой бы форме это бы не было записано. Почему Вы считаете $\qquad 2^3+3^3=(\sqrt[3]{35})^3$
контрпримером существования решения уравнения Ферма в иррациональных числах, а не решением $\qquad 2^3+3^3=(\sqrt[n]{35})^n, n=1,2,3,...$уравнений Билля? А доказательство того что эти примеры относятся к сложению длин отрезков , очень простое.

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение05.05.2015, 07:57 


10/08/11
671
Yarkin в сообщении #1011289 писал(а):
контрпримером существования решения уравнения Ферма в иррациональных числах, а не решением $\qquad 2^3+3^3=(\sqrt[n]{35})^n, n=1,2,3,...$уравнений Билля? А доказательство того что эти примеры относятся к сложению длин отрезков , очень простое.

Уважаемый Yarkin!
Все степени УФ складываются на прямой. Но, основания степеней всегда существуют и на прямой они не складываются (горбатятся в треугольник). По Вашему и равенство $1^2+1^2=(\sqrt{2})^2$ нельзя интерпретировать прямоугольным треугольником с квадратами на его сторонах? Ждем Вашу очередную шутку.

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение05.05.2015, 11:33 
Аватара пользователя


22/07/08
1416
Предместья
Yarkin в сообщении #1011289 писал(а):
А доказательство того что эти примеры относятся к сложению длин отрезков , очень простое.

Такого доказательства не может существовать в принципе.
Поскольку эти примеры не относятся к сложению длин отрезков.
Они относятся к сложению чисел.

(Оффтоп)

Случай в банке при оформлении кредита.
- Вот тут напишите сумму прописью, а тут поставьте вашу подпись.
- Девушка, а как это - прописью?!
- Ну, так и пишите, буквами...
- Ты чё - дура?! Как это буквами?! Там же ЦИФРЫ!!!


-- Вт май 05, 2015 10:40:23 --

Yarkin в сообщении #1011289 писал(а):
Почему Вы считаете $\qquad 2^3+3^3=(\sqrt[3]{35})^3$ контрпримером существования решения уравнения Ферма в иррациональных числах, а не решением $\qquad 2^3+3^3=(\sqrt[n]{35})^n, n=1,2,3,...$уравнений Билля?

Я так не считаю... Я вообще против представления чисел какими бы то ни было геометрическими фигурами вообще.
Именно из-за того, что невозможно для каждого числа указать размерность, а если размерности разные, то складывать их нельзя...
Это я по поводу гипотезы Била, в частности. Как можно складывать длину отрезка с площадью квадрата и объемом куба?!
Ну и из-за невозможности построить единичный отрезок, в частности.

-- Вт май 05, 2015 10:57:00 --

Yarkin в сообщении #1011289 писал(а):
В первом примере сумма. (допустим длин) отрезков 8 и
27 равна 35, а в Вашем примере аналогичная сумма 16 и 9 равна 25


А теперь допустим, что в первом примере сумма объёмов кубов, а во втором примере сумма площадей квадратов (пифагоровы штаны видели, надеюсь?!). Ну и что?!
Допустить мы можем все, что не противоречит установленному равенству.
Вот я могу допустить, что равенство $(\sqrt{3})^4+(2)^4=(\sqrt{5})^4$ изображает остроугольный треугольник, на сторонах которого построены гиперкубы, причем суммы гиперобъемов двух меньших гиперкубов равны гиперобъему бОльшего гиперкуба.
Причем стороны треугольника будут равны, соответственно $\left\lbrace\sqrt{3}, 2, \sqrt{5}\right\rbrace$ (единиц длины).
И охотно допускаю, что равенство $3^2+4^2=5^2$ изображает другой треугольник, уже прямоугольный, на сторонах которого построены квадраты, и сумма площадей меньших квадратов равна площади бОльшего квадрата.
Это ничуть не противоречит тому факту, что равенство $9+16=25$ может изображать отрезок длиною в 25 (единиц длины) разбитый на два отрезка, имеющих длины в 9 и 16 (единиц длины).

(Оффтоп)

И все это, как говорил гражданин О.Бендер: "Квази уно фантазия"


-- Вт май 05, 2015 11:27:52 --

Yarkin в сообщении #1011289 писал(а):
Я четко сказал, что геометрическая интерпретация этих примеров возможна только на прямой


Да хоть на дуге окружности, какое это имеет значение?..

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение05.05.2015, 16:51 


10/08/11
671
Yarkin в сообщении #1011289 писал(а):
$\qquad, n=1,2,3,...$уравнений Билля?

Для уравнений Билля показатели >2. Как $35^1$ может дать одно из целых чисел решения уравнения Билля?

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение05.05.2015, 18:19 


16/03/07

823
Tashkent
lasta в сообщении #1011364 писал(а):
По Вашему и равенство $1^2+1^2=(\sqrt{2})^2$ нельзя интерпретировать прямоугольным треугольником с квадратами на его сторонах?

Увы.
Лукомор в сообщении #1011401 писал(а):
Я вообще против представления чисел какими бы то ни было геометрическими фигурами вообще.

Я тоже.
lasta в сообщении #1011485 писал(а):
Для уравнений Билля показатели >2. Как $35^1$ может дать одно из целых чисел решения уравнения Билля?

Согласен. Ноя не исключаю случаи n=1,2
Модераторам! Дабы не получился захват темы, прошу эту дискуссию отделить под названием "О существовании решения УФ в иррациональных числах".

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение05.05.2015, 18:32 
Заслуженный участник


04/05/09
4586
Yarkin в сообщении #1011510 писал(а):
lasta в сообщении #1011364 писал(а):
По Вашему и равенство $1^2+1^2=(\sqrt{2})^2$ нельзя интерпретировать прямоугольным треугольником с квадратами на его сторонах?

Увы.
Лукомор в сообщении #1011401 писал(а):
Я вообще против представления чисел какими бы то ни было геометрическими фигурами вообще.

Я тоже.
lasta в сообщении #1011485 писал(а):
Для уравнений Билля показатели >2. Как $35^1$ может дать одно из целых чисел решения уравнения Билля?

Согласен. Ноя не исключаю случаи n=1,2
Модераторам! Дабы не получился захват темы, прошу эту дискуссию отделить под названием "О существовании решения УФ в иррациональных числах".
Встречное предложение - прекратить этот абсурд.

 Профиль  
                  
 
 Re: Наблюдения к ВТФ
Сообщение05.05.2015, 19:07 


20/03/14
12041
 i  Тема закрыта. Причина: бред от первого до последнего слова.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 31 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group