Однако построения Мостовского тяжелы для понимания. Ему удалось не вводить аксиому индукции и остаться в рамках первопорядковой логики. Может быть есть и другие такие построения ? Подскажите литературу.
Вы так говорите, будто Мостовский — большой оригинал.
На самом деле он следует давно сложившимся стандартам и излагает самую что ни на есть классическую аксиоматику теории множеств и традиционную систему определений. Откройте любой список аксиом теории множеств в любом учебнике или на любом сайте, и Вы не увидите там аксиому индукции. Принцип индукции для множества натуральных чисел, определяемого в рамках теории множеств, является не аксиомой, а теоремой, т.е. выводится из других аксиом. Любые «другие построения» будут отличаться лишь мелочами и стилем изложения, так что можете выбрать на вкус любой учебник. Чем древнее учебник, тем больше в нем занудства, больше разжевывания технических моментов и больше отвлечений на разнообразные нюансы, но аксиомы и ключевые определения везде одни и те же — по крайней мере, с точностью до логической эквивалентности. Так или иначе множество натуральных чисел определяется как наименьшее по включению индуктивное множество, благодаря чему принцип индукции оказывается фактически прямым следствием определения.
возникают определенные проблемы со схемами аксиом
Такова ваша судьба пруверская.
Если Вы надеетесь в какой-нибудь книжке найти список аксиом теории множеств, не содержащий схем аксиом, то я вынужден Вас огорчить: не найдете. Теория множеств под названием ZF(C) не поддается аксиоматизации посредством конечного набора аксиом. Если страсть как хочется избежать схем, переходите на теорию классов фон Неймана — Гёделя — Бернайса NGB, она имеет конечную аксиоматику.