2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 00:50 
Аватара пользователя
Рассмотрим последовательность сумм первых $n$ факториалов:
$$1, 3, 9, 33, 153, 873, 5913, 46233, 409113, 4037913, \dots$$
Для каждого члена этой последовательности найдём расстояние от этого члена до ближайшего квадрата целого числа:
$$0, 1, 0, 3, 9, 27, 16, 8, 487, 2187, \dots$$
Почти всегда получается степень простого числа с целым неотрицательным показателем.
Это можно как-то объяснить?

 
 
 
 Re: Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 02:25 
Аватара пользователя
"Почти всегда" - это как? Первый десяток чисел не позволяет сделать такого вывода.
Пока что похоже на всего лишь проявление "сильного закона малых чисел" - см.:
http://en.wikipedia.org/wiki/Strong_Law ... ll_Numbers
http://www.maa.org/sites/default/files/ ... 97-712.pdf

 
 
 
 Re: Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 02:27 
Аватара пользователя
А как вы вообще это обнаружили?

 
 
 
 Re: Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 02:32 
Аватара пользователя
maxal в сообщении #965321 писал(а):
"Почти всегда" - это как?

Нуль получается только при $n=1$ и $n=3$, в дальнейшем суммы факториалов всегда оканчиваются на 3, а квадраты на тройку не оканчиваются. В остальных случаях (среди первых 10) закономерность налицо.
Ещё любопытно, что при $n=10$ и при $n=11$ получается один и тот же результат, $2187$, а это $3^7$.
При $n=12$ также получается простое число.
Тут явно что-то не так.

-- 20.01.2015, 02:35 --

Sicker в сообщении #965323 писал(а):
А как вы вообще это обнаружили?

Это уж совсем оффтоп. Кому любопытно - в личку!
Могу лишь сказать, что в этом замешана Кацечка.

 
 
 
 Re: Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 02:37 
Аватара пользователя
Ktina, среди первых 100 членов последовательности ваша "закономерность" наблюдается лишь у 10. Подозреваю, что дальше их плотность будет еще меньше.

 
 
 
 Re: Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 02:39 
Аватара пользователя
maxal
Всё равно какое-то объяснение этой странности быть должно.

 
 
 
 Re: Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 02:41 
Аватара пользователя
Не вижу никакой странности. Читайте статью Гая (ссылка выше) - там много примеров подобных "странностей" (по сути простых совпадений).

 
 
 
 Re: Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 02:44 
Аватара пользователя
maxal
Статья кажется неплохой, да и как раз в тему, буду читать. Спасибо большое-пребольшое!

 
 
 
 Re: Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 02:45 
Ktina в сообщении #965290 писал(а):
степень простого числа с целым неотрицательным показателем
Вот эту часть я могу объяснить прям сходу: целые неотрицательные показатели получаются потому что мы имеем дело с натуральными числами :wink:
Закономерность действительно интересная, как раз хотел поинтересоваться, как именно там дальше обстоит дело. Спасибо maxal, вопрос отпал, хотя, может, попробую глянуть, как там дальше.
maxal в сообщении #965328 писал(а):
наблюдается лишь у 10
А можно, если не трудно, списочек?

 
 
 
 Re: Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 02:47 
Аватара пользователя
iifat в сообщении #965336 писал(а):
maxal в сообщении #965328 писал(а):
наблюдается лишь у 10
А можно, если не трудно, списочек?

2, 4, 5, 6, 7, 8, 9, 10, 11, 12

 
 
 
 Re: Расстояние от суммы факториалов до ближайшего квадрата
Сообщение20.01.2015, 04:47 
О! Всё гораздо хуже: 2-12, а потом ничего до 100. Таки ж простите, но это и правда не закономерность.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group