2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Матричная задача
Сообщение13.07.2014, 17:19 
Найдите все квадратные вещественные матрицы порядка 3, удовлетворяющие уравнению
$X^2+E=0$.

Можно расписать матрицу $X$, возвести в квадрат и приравнять к матрице $-E$ или приравнять матрицу $X$ к $X^{-1}$, но в обоих случаях получаются слишком много(хотя симметричных) условий, и с ними неудобно работать. Может есть более эффективный метод?

 
 
 
 Posted automatically
Сообщение13.07.2014, 17:21 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
Тема перемещена в Карантин по следующим причинам:

Что Вы пробовали?

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение13.07.2014, 17:36 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 17:56 
А начать с нуля не пробовали? Определители там сравнить?

Upd Правда, здесь ничего не выйдет, но начать не мешает иногда.

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 18:11 
Аватара пользователя
Эта тема (извлечение квадратных корней из матриц) уже обсуждалась. Какие собственные значения $X$ может иметь?

Предположим, что

1) $X$ диагональна. Какие такие решения будут?
2) Примем без док-ва, что $X$ диагонализируема. Полъзуясь 1) найдите все решения

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 18:18 

(Оффтоп)

Удалено. Размерность прозевала.

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 18:52 
Rich в сообщении #887033 писал(а):
Найдите все квадратные вещественные матрицы порядка 3, удовлетворяющие уравнению
$X^2+E=0$.

Может ли такая матрица иметь вещественные собственные числа? Должна ли?

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 19:33 
Если $X$ имеет диагональный вид,то решениями будут комлексные матрицы,с комплексными действительными числами, а нам нужны действительные матрицы.

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 19:55 
Аватара пользователя
Но ведь определитель квадрата равен квадрату определителя, где последний неотрицателен, а в данном случае... Разве нет? :-)

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 19:58 
Не, размерность неподходящая. Для четных сойдет.

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 20:08 
Аватара пользователя
Otta в сообщении #887111 писал(а):
Не, размерность неподходящая. Для четных сойдет.

А кому "ремарка" адресовалась? :-)

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 20:14 
1r0pb

(Оффтоп)

Наверное, Вам. Чтобы проверили и посмотрели, работает или нет. :-) Посмотрели? И ошиблись там же. Здорово. Ну теперь мы оба будем внимательнее. :D

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 20:24 
Аватара пользователя
Otta ну если ТС верно записал условие, то тут и проверять нечего.:-) Если серьезно, то не пойму в чем загвоздка... Ладно бы $M_3(C)$...

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 20:27 
Я тоже не знаю, о чем Вы. Ничто не мешает квадрату определителя быть равным единице. Или Вы о чем-то другом.

 
 
 
 Re: Матричная задача
Сообщение13.07.2014, 20:30 
Аватара пользователя
$X^2+E=O,\ X^2=-E$, но $|X^2|=|X|^2\neq |-E|=-1$. У меня все. :-)

 
 
 [ Сообщений: 22 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group