2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4  След.
 
 Целые точки на эллиптических кривых
Сообщение06.02.2007, 22:44 
решить в натуральных(или целых, не помню как было в оригинале) числах уравнение $k^3-10=n^2$

 
 
 
 
Сообщение07.02.2007, 00:07 
Аватара пользователя
Это кривулька Морделла.

Целых точек на ней нет. Цитирую:
Код:
E_-00010: r = 0   t = 1   #III =  1
          E(Q) = {O}
          R =   1.0000000000
           0 integral points

 
 
 
 
Сообщение07.02.2007, 18:20 
а доказать что целых точек нету? :D по-другому

 
 
 
 
Сообщение07.02.2007, 22:05 
переносим 10 вправо, строим графики левой и правой части, видим, что пересекутся они на интервале (2;3) т.е. целых корней нет.

 
 
 
 
Сообщение07.02.2007, 22:07 
Аватара пользователя
-sss- писал(а):
переносим 10 вправо, строим графики левой и правой части, видим, что пересекутся они, на интервале (2;3) т.е. целых корней нет.

Какие графики? Там же две независимые переменные $k$ и $n$.

 
 
 
 
Сообщение07.02.2007, 22:25 
Аватара пользователя
Ну можно, например, показать, что $k=7(4t-3)$. Но что дальше делать, пока не видно.

 
 
 
 найти все a и b
Сообщение08.02.2007, 15:14 
найти все целые неотрицательные a и b такие, что выполняется равенство:
$k - a^2 = n - b^3$,
где k и n - заданные неотрицательные целые числа, $n\geq k$

 
 
 
 
Сообщение08.02.2007, 16:09 
Аватара пользователя
1. Не очень понятно, зачем заданы два независимых параметра $k$, $n$, хотя можно обойтись одним.
2. Насколько мне известно, про уравнение $x^3-y^2=c$ вообще известно очень мало (например, доказано, что для каждого с есть не более чем конечное множество решений).
Например, при с=2 доказать, что единственное решение --- это пара (3,5), достаточно сложно. Кроме того, доказано, что существует бесконечное множество таких чисел с, что это уравнение вообще не имеет решений во взаимно простых числах.
Или я неправ :?: :shock:

 
 
 
 
Сообщение08.02.2007, 16:11 
Аватара пользователя
1) Зачем два параметра $k$ и $n$ если вместо них можно взять их разность?
2) Для некоторых $n$ и $k$ отсутствие решений показывается очень просто, для других сложнее, для третьих (в пределах когда разность порядка 100) показывается, что они есть.
3) Есть одно достаточное условие, которое гарантирует конечность множества решений.
4) Сейчас придёт maxal и скажет: Это кривулька Морделла.
Заодно меня поправит, если я где-нить наврал и снабдит сказанное ссылками. :D

 
 
 
 
Сообщение08.02.2007, 16:24 
Lion писал(а):
Насколько мне известно, про уравнение $x^3-y^2=c$ вообще известно очень мало (например, доказано, что для каждого с есть не более чем конечное множество решений).

я и сам ответа не знаю.. не могли бы вы указать источник, где приводится это доказательство

Добавлено спустя 8 минут 42 секунды:

bot писал(а):
1) Зачем два параметра $k$ и $n$ если вместо них можно взять их разность?

видимо, для того чтобы запутать :)

 
 
 
 
Сообщение08.02.2007, 16:25 
Аватара пользователя
sadomovalex писал(а):
я и сам ответа не знаю.. не могли бы вы указать источник, где приводится это доказательство

Доказал это немецкий математик Зигель в 1929 г. Поскольку немецкий я не знаю, просто цитирую то, что написано в книге:
Siegel, "Uber einige Anwendungen diophantischer Approximationen", Abh. Preuss. Akad. Wiss. Berlin, Phys. Math. Kl., 1 (1929), 57 pp.

Надеюсь, Вы это найдете. :lol:

 
 
 
 
Сообщение08.02.2007, 16:33 
Аватара пользователя
Вот здесь
maxal давал какую-то ссылку. Для меня в ней нуль информации, посмотрите, может быть Вам она больше подойдёт.

Добавлено спустя 5 минут 46 секунд:

Не, наверно не нуль - просто я даже и не вникал, что там написано, сейчас только мельком глянул, что означают эти закорючки.

 
 
 
 
Сообщение08.02.2007, 16:49 
Lion писал(а):
Доказал это немецкий математик Зигель в 1929 г. Поскольку немецкий я не знаю, просто цитирую то, что написано в книге:
Siegel, "Uber einige Anwendungen diophantischer Approximationen", Abh. Preuss. Akad. Wiss. Berlin, Phys. Math. Kl., 1 (1929), 57 pp.

Надеюсь, Вы это найдете. :lol:


спасибо :)

Добавлено спустя 1 минуту 6 секунд:

bot писал(а):
Вот здесь
maxal давал какую-то ссылку. Для меня в ней нуль информации, посмотрите, может быть Вам она больше подойдёт.

Добавлено спустя 5 минут 46 секунд:

Не, наверно не нуль - просто я даже и не вникал, что там написано, сейчас только мельком глянул, что означают эти закорючки.


да, большое спасибо - там по ссылке как раз описан алгоритм отыскания таких решений. Вернее решения для конкретных кривых :)

 
 
 
 
Сообщение08.02.2007, 20:04 
Решение базируется на лемме : пусть для целых n и m числа $n^2$ и $2m^2$ взаимно просты. Тогда у числа $n^2+2m^2$ нету простых делителей вида $8t+5$ и $8t+7$

 
 
 
 
Сообщение08.02.2007, 21:04 
Аватара пользователя
Тогда все просто.
$k^3-2=n^2+2\cdot 2^2$
$(k-2)(k(k+2)+4)=n^2+2$.
Ясно, что $n$ нечетно.
Используя $k=7(4t-3)$, имеем
$t\equiv 0 \mod 2 \to k(k+2)+4\equiv 7 \mod 8$
$t\equiv 1 \mod 2 \to (k-2)\equiv 5 \mod 8$.

 
 
 [ Сообщений: 46 ]  На страницу 1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group