2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 "Усиление" МТФ
Сообщение23.02.2012, 17:26 
$a^p-a$ всегда делится на $6p$ при целых положительных a и простых $p>3$. Для $p=3$ $a^p-a$ всегда делится на $6$

Доказательство несложное..

 
 
 
 Re: "Усиление" МТФ
Сообщение24.02.2012, 08:25 
Кстати, это кроме всего прочего говорит о том, что только простые степени имеют четкую пространственную структуру относительно основания (т.е, самого числа). А остальные (составные) степени имеют пространственную структуру только относительно простых степеней. Наподобие того, что все составные числа "построены" из простых.

-- 24.02.2012, 09:48 --

А почему нет комментариев? Разве я высказал тривиальный факт? Сам я не нашел нигде ни МТФ в таком виде, ни о пространственно-степенных структурах(это я их так назвал :D ), которые можно наглядно увидеть, "покрутить" так сказать, чем я сейчас и занимаюсь. . Или все кинулись доказывать ВТФ "по вновь открывшимся обстоятельствам"? 8-)
Что интересно, эти структуры строятся элементарным способом, обладают своими строгими закономерностями и, как следствие, поддаются вполне элементарному анализу, который могли произвести за сотни а то и за тысячи лет до Ферма (по крайней мере, для третьей степени). Также интересно, что каждая последующая степенная структура явно связана с предыдущей.
Кстати, преподносится как довод в пользу того, что у Ферма не было док-ва его большой теоремы тот факт, что где-то в его бумагах нашли док-во для четвертой степени. Так вот, я полагаю, что у него этого док-ва не хватало, поэтому он и доказывал его отдельно. А для простых степеней как раз оно у него и было...

-- 24.02.2012, 10:01 --

А из более сильной МТФ следует, к примеру, явный вывод по ВТФ: одно из чисел должно быть обязательно больше $6p$, кроме куба - там больше 6. Для 5-ой степени - больше 30, для 7-ой - больше 42, для 11-ой - больше 66 и т.д. до бесконечности.. Т.е., 6р - это "кирпичик" или "атом" далее которого делить нельзя.

 
 
 
 Re: "Усиление" МТФ
Сообщение24.02.2012, 09:33 
Что-то похожее выдвигал Кариола в этом же разделе, но несколько раньше.

 
 
 
 Re: "Усиление" МТФ
Сообщение24.02.2012, 09:42 
Честно говоря я просмотрел все темы этого раздела, но похожего не нашел... Может ссылку дадите? Даже просто на похожие пусть и с других форумов?

 
 
 
 Re: "Усиление" МТФ
Сообщение24.02.2012, 10:15 
Вторая страница этого раздела " Расширение МТФ" (Кариола)

 
 
 
 Re: "Усиление" МТФ
Сообщение24.02.2012, 10:49 
Спасибо, действительно, я как-то просмотрел, однако там 3, у меня 6 - более сильное утверждение, во-вторых, нет развития в структурированные формы. Я сейчас изображу такую форму для куба числа и выложу сюда.. Правда "поля здесь несколько узковаты" :-) ...

 
 
 
 Re: "Усиление" МТФ
Сообщение24.02.2012, 12:33 
alexo2 в сообщении #542108 писал(а):
А почему нет комментариев? Разве я высказал тривиальный факт?
Именно поэтому.

 
 
 
 Re: "Усиление" МТФ
Сообщение24.02.2012, 12:36 
Значит смысла нет и рисовать свои "степенные формы"? :-(

 
 
 
 Re: "Усиление" МТФ
Сообщение26.09.2012, 04:37 
Кстати, как известно, МТФ необратима, т.е., при выполнении условий, показатель - не обязательно простое число. Интересно, а что в "усиленном" варианте? Может, при выполнении условий - показатель обязательно простое?...

 
 
 
 Re: "Усиление" МТФ
Сообщение26.09.2012, 07:42 
alexo2 в сообщении #623516 писал(а):
Может, при выполнении условий - показатель обязательно простое?...

Нет. Любое число Кармайкла, не делящееся на 3, даст контрпример.

 
 
 
 Re: "Усиление" МТФ
Сообщение26.09.2012, 08:07 
migmit в сообщении #623532 писал(а):
Любое число Кармайкла, не делящееся на 3, даст контрпример.


Ну, все-таки, для тестирования на простоту границы ещё более сужены...

 
 
 
 Re: "Усиление" МТФ
Сообщение26.09.2012, 13:33 
Усиление "усиления" МТФ
Любое число $(a^n -a)$ , где $n$ - нечетное (простое или составное)
число, делится на $6$.
Любое число $(a^{2k} -a^2)$ , где $k$ - любое число, делится на $6$.

 
 
 
 Re: "Усиление" МТФ
Сообщение26.09.2012, 15:18 
klitemnestr в сообщении #623589 писал(а):
Усиление "усиления" МТФ
Любое число $(a^n -a)$ , где $n$ - нечетное (простое или составное)
число, делится на $6$.
Любое число $(a^{2k} -a^2)$ , где $k$ - любое число, делится на $6$.

Это "ослабление"

 
 
 
 Re: "Усиление" МТФ
Сообщение26.09.2012, 16:54 
Ослабление или разочарование?
Извините, но чем смог, тем помог.
Дополнение: если число $a$ не кратно $3$ и показателю степени и если показатель степени простое число $n>3$, то число $(a^n-a)$ делится на $6n$.

 
 
 [ Сообщений: 14 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group