Хотел бы уточнить на счет углов Крылова. Насколько я понял в случае углов Крылова поворот осуществляется вокруг подвижных осей. т.е. угловые частоты подвижных осей

(из уравнений Эйлера) всегда совпадают по направлению с производными от соответствующих углов Крылова. Иначе говоря можно интегрировать систему уравнений Эйлера непосредственно без использования всякого рода кинематических преобразований (типа преобразования Эйлера).
Тогда:
Где углы

однозначно характеризуют поворот относительно неподвижной системы координат.
Я прав в своих рассуждениях или где-то допускаю ошибку?
Вот только смущает получающаяся простота. И тогда зачем вообще заморачиваться используя преобразование Эйлера которое на порядок усложняет диф. ур.
Добавлено спустя 2 часа 47 минут 35 секунд:
Я кажется понял в чем ошибка - в отличии от поворотов в углах Эйлера повороты в углах Крылова некоммутативны т.е. результирующее положение зависит от порядка в котором осуществлять эти повороты. В таком случае не представляю как их вообще можно использовать при решении подобных задач.
