2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение20.03.2015, 16:16 
Аватара пользователя
Некто писал(а):
... мне кажется, в ОТО требуется очень большая осторожность при рассуждениях о массе либо полной энергии тела.

Это только при фундаментальных приложениях на практике это малые добавки. Первоначальные цели теории были обнаружить релятивистские эффекты исходя из общих принципов. Уже соответствие в пределе теории Ньютона на этом этапе было серьезным достижением.

С тензором энергии-импульса никаких проблем не было он появлялся (хронология тут не важна) в релятивистской формулировке электродинамики и распространена на макроскопические объекты. Проблемы появились с вакуумными решениями. В Теории появилась возможность описать поле гравитации с нулевым тензором энергии-импульса и только эта возможность была успешно реализована. Это создало проблемы позже, когда стали интересоваться эффектами сильных полей и основаниями теории.
Но существует и другая возможность. Эйнштейн (1918 г.) показал, что по в случае нескольких гравирующих тел тензор энергии-импульса заведомо не нулевой. Это соответствует общим принципам теорий близкодействия. Достаточно определенно эту мысль выразил А. Зоммерфельд [Электродинамика] «Из статики электрона нам известна пока только лоренцева сила, действующая в точке расположения заряда. Однако при переходе к полевой точки зрения мы не можем удовлетвориться этим и должны исследовать также и перенос силовых взаимодействий через вакуум, где нет никаких зарядов. Именно это обстоятельство имел ввиду Фарадей, когда он говорил о силовых линиях как об упругих трубках, переносящих натяжение и давление. Максвеллу удалось и здесь придать догадкам Фарадея ясную математическую форму. Так возник тензор натяжений Максвелла, релятивистским обобщением которого является тензор энергии-импульса». Я не знаю причин, по которым тоже самое нельзя сделать в геометрической теории гравитации.
Ответ находится при обращении к принципу эквивалентности и неинерционным системам, важное место среди них занимают однородно ускоренные неинерционные системы.
http://arxiv.org/pdf/1305.5412
http://arxiv.org/pdf/1404.3083
Далее выясняется, что неинерциальные системы как правило имеют ненулевой тензор кривизны. Например, система Меллера - единственная плоская среди неинерциальных систем, полученных меллеровским алгоритмом. Путем инфинитезимальных преобразований Лоренца Меллер получил ускоренные системы довольно общего вида
$ds=f(x)c^2dt^2 -dx^2-dy^2-dz^2$
из них только собственно Меллеровская система
$ds=(1-ax/c^2)c^2dt^2 -dx^2-dy^2-dz^2$
плоская.
Примеров достаточно в приведенных выше ссылках
Более того, для однородной ускоренной системы ненулевым является и тензор Эйнштейна. Из уравнения Эйнштейна и принципа эквивалентности следует, что однородное гравитационное поле в вакууме имеет ненулевой тензор энергии-импульса который подобен аналогичному тензору электрического поля с противоположным знаком.
__________________________________________

подробности
Метрика ускоренной системы и решения уравнения Эйнштейна
Морозов В. Б.

Получена метрика однородно ускоренной системы и эквивалентная ей метрика однородного стационарного гравитационного поля. Получено точное решение гравитационного уравнения Эйнштейна для сосредоточенной массы как задачи Коши с асимптотически однородными граничными условиями. Тензор энергии импульса этой метрики ненулевой и подобен тензору энергии импульса однородного электрического поля, взятому с обратным знаком. Решение Шварцшильда рассматривается как приближение этого решения.

Ключевые слова: уравнение Эйнштейна, тензор энергии-импульса поля, однородная неинерциальная система отсчета, строгие решения уравнения Эйнштейна.

Теоретическая и математическая физика. Июнь и июль (Т. 183,
No. 3 или Т. 184, No. 1), 2015.
__________________________________
Содержательная информация будет доступна только в библиотеках. По правилам журнала статьи можно скачать бесплатно можно только через три года.

Забавная рецензия от профессора математики. Похоже автор чем-то сильно расстроен
Дмитрий Зотьев писал(а):
Я таки прочитал вашу статью любезный г-н Морозов. Как и предполагалось, статья безграмотная. Мне остается только сожалеть о том, что журнал ТМФ принял к публикации этот бред, ниспровергающий основы ОТО и исправляющий Шварцшильда. Вот мое мнение http://extremal-mechanics.org/wp-conten ... rozoff.pdf, которое, надеюсь, имеет право быть опубликованным в помойке, которую вы приписали мне (автор темы - Дмитрий Зотьев).

И если уж я - автор темы, как вы изволили соврать, то я публикую в ней то, что хочу. Не бойтесь моего отзыва, к.ф.-м.н. Морозов, ведь вы же - глубокий физик, известный борец с лжеучеными, имеющий кучу полуграмотных поклонников! Разве может поколебать ваш высокий авторитет какой-то доктор Зотьев, которого с вашей подачи, на радость мошеннику Трещалову, здесь поливают дерьмом уже почти 2 года? К тому же с вами еще один великий физик-теоретик, Игорь Соколов из Мичигана. Начните с моей личности, Морозов, ведь это - ваш стиль ведения научных дискуссий, когда вам нечего сказать по существу (т.е. почти всегда) ))

 
 
 
 Posted automatically
Сообщение20.03.2015, 17:09 
 i  Тема перемещена из форума «Физика» в форум «Карантин»
по следующим причинам:

- отсутствует формулировка предмета обсуждения;
- содержательная информация доступна только по внешним ссылкам.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение22.03.2015, 02:07 
 i  Тема перемещена из форума «Карантин» в форум «Физика»
Причина переноса: не указана.

 
 
 
 Re: Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение22.03.2015, 02:17 
Аватара пользователя
Мною выборочно прочитано первое сообщение темы "Метрика ускоренной системы и решения уравнения Эйнштейна". Более содержательное изложение моего мнения по поводу прочитанного возможно будет произведено только после изложения автором темы так и оставшегося неизвестным предмета обсуждения.

 
 
 
 Re: Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение22.03.2015, 02:59 
Аватара пользователя
MOPO3OB в сообщении #993096 писал(а):
Далее выясняется, что неинерциальные системы как правило имеют ненулевой тензор кривизны. Например, система Меллера - единственная плоская среди неинерциальных систем, полученных меллеровским алгоритмом. Путем инфинитезимальных преобразований Лоренца Меллер получил ускоренные системы довольно общего вида
$ds=f(x)c^2dt^2 -dx^2-dy^2-dz^2$
из них только собственно Меллеровская система
$ds=(1-ax/c^2)c^2dt^2 -dx^2-dy^2-dz^2$
плоская.


Допущена опечатка. Метрика Меллера (потенциал $\varphi=-ax$)

$ds=(1-ax/c^2)^2 c^2dt^2 -dx^2-dy^2-dz^2$

Естественно плоская. А метрика считающаяся плоской

$ds=(1-ax/c^2)c^2dt^2 -dx^2-dy^2-dz^2$ (2)

таковой не является. В (ЛЛ-2) именно эта метрика используется в решении Шварцшильда в п.100. На самом деле для решения существенен только $g_{00}$. Но метрики вида (2) не только не плоские, но и их тензор Эйнштейна не нулевой. А значит для решения Шварцшильда на бесконечности не выполняется уравенение

$G_{ij}=0$

Откуда следует, что уравнение для пустоты выбрано неверно и/или условие на бесконечности другое.

 
 
 
 Re: Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение22.03.2015, 16:29 
Аватара пользователя
MOPO3OB в сообщении #993886 писал(а):
метрика считающаяся плоской

$ds=(1-ax/c^2)c^2dt^2 -dx^2-dy^2-dz^2$ (2)

таковой не является. В (ЛЛ-2) именно эта метрика используется в решении Шварцшильда в п.100.
А вот это другое дело. Это попросту ложь.

 
 
 
 Re: Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение22.03.2015, 20:38 
Аватара пользователя
Утундрий в сообщении #994107 писал(а):
А вот это другое дело. Это попросту ложь.

Ну да, либо Ваша, либо моя.

Или врут Ландавшицы?
теория поля писал(а):
§ 100. Центрально-симметричное гравитационное поле
................
Изображение
...........

 
 
 
 Re: Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение22.03.2015, 20:49 
Аватара пользователя
MOPO3OB в сообщении #994239 писал(а):
либо Ваша, либо моя
Ваша-ваша. И чтобы убедиться, достаточно открыть тот самый параграф и самостоятельно лицезреть, что ваше $(2)$ к нему ни каким боком не относится. Так что поздравляю вас, совра́мши. Врите далее, я внимаю.

 
 
 
 Re: Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение22.03.2015, 21:16 
Аватара пользователя
Утундрий в сообщении #994243 писал(а):
Так что поздравляю вас, совра́мши. Врите далее, я внимаю.

Глубоко уважаемый, храбро спрятавшийся за ником.
Вы не правы!

Осмелюсь напомнить Вам, что потенциал связан с ускорением силы тяжести $a $ и координатой $x$ $\varphi =-ax/c^2 $.
И сразу сообщу. Принцип эквивалентности связывает поле ускорений ускоренной системы и гравитационное поле. В общем случае локально. Но для дальнего (однородного) поля эти поля совпадают.
(урок следует оплатить, сумму и номер банковской карты сообщу в личку)

 
 
 
 Re: Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение22.03.2015, 21:37 
 ! 
Утундрий в сообщении #994243 писал(а):
Ваша-ваша. И чтобы убедиться, достаточно открыть тот самый параграф и самостоятельно лицезреть, что ваше $(2)$ к нему ни каким боком не относится.
MOPO3OB в сообщении #994254 писал(а):
Вы не правы!
Так. Раз пошли жалобы и самостоятельно этот вопрос не решается, я прошу указать точное место, где эта метрика используется в упомянутом параграфе ЛЛ-2. Для определенности - в 7-м издании 1988 года, оно доступно в сети. До появления ответа на этот вопрос продолжение дискуссии крайне нежелательно.

MOPO3OB в сообщении #994254 писал(а):
Глубоко уважаемый, храбро спрятавшийся за ником.
А вот за это сразу замечание. Использование ников на форуме является вполне естественным.

 
 
 
 Re: Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение22.03.2015, 22:56 
Аватара пользователя
Pphantom в сообщении #994262 писал(а):
я прошу указать точное место, где эта метрика используется в упомянутом параграфе ЛЛ-2

Как еще? я одно указал и процитировал. Предполагается, что товарищ знаком с предметом и ему не составит труда сообразить, точнее просто прочитать, что в решении используется только $g_{00}$ Метрика предложенная мной совпадает с метрикой источника, независимо от того, с какой интонацией произнесено "вранье".
Кстати любая другая метрика с данным $g_{00}$ тоже годится.

Уважаемый товарищ просто хамит. Или мне показалось?
Pphantom в сообщении #994262 писал(а):
Раз пошли жалобы и самостоятельно этот вопрос не решается...

Это индульгенция на ответное хамство? На вопрос (которого не было) дан ответ.
Или мне надо оправдываться?

Я не считаю хамство на форумах чем-то неприемлемым. Но в данном случае хотел бы услышать извинения.

-- Пн мар 23, 2015 01:04:24 --

Утундрий в сообщении #994243 писал(а):
Врите далее, я внимаю.

Что за тон? Вас где воспитывали? Перечитайте свои посты - ничего конкретного.

 
 
 
 Re: Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение22.03.2015, 23:06 
Аватара пользователя
MOPO3OB в сообщении #994299 писал(а):
в решении используется только $g_{00}$
И опять пальцем в <вырезано цензурой> небо.
MOPO3OB в сообщении #994299 писал(а):
хотел бы услышать извинения.
Извинений? А за что, собственно? Вы ни чёрта не поняли в цитированном параграфе ЛЛ-2, облыжно оболгали его авторов, тиснули какую-то статейку (где обгадили заодно и Шварцшильда). А теперь требуете извинений? Блинов вам на лопате, а не извинений!

 
 
 
 Re: Метрика ускоренной системы и решения уравнения Эйнштейна
Сообщение22.03.2015, 23:09 
 !  Я не вижу ни ответа - от Вас, ни хамства - в сообщениях участника Утундрий. Второе, увы, посмотрев на предпоследнее сообщение, написать уже не могу. Отношения, если угодно, выясняйте в ЛС.

Тема отправляется в Пургаторий.

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group