2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 04:41 
Учетверение.

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 04:42 
Аватара пользователя
arseniiv в сообщении #976607 писал(а):
если мощность «вычитаемого» больше (или меньше, в зависимости от того, откуда куда мы выбираем $f$), то результат вообще не получится: мы не найдём инъективных функций.

Этот тезис явный, но он не имеет отношения к теме.

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 04:44 
Как не имеет? Вы попытались определить операцию, а она не везде определена. Хотя два раза бить по ней и правда излишне.

-- Ср фев 11, 2015 06:45:58 --

Ну так что с учетверением? $f(n) = 4n$, $2\mathbb N\setminus f(\mathbb N) = 4\mathbb N+2\ne\varnothing.$

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 04:46 
Аватара пользователя
arseniiv в сообщении #976611 писал(а):
Учетверение.

Множества $1, 2, 3, 4, ...$ и $4, 8, 12, 16, ...$
Так же вычитаем:
$1 - 4$
$2 - 8$
$3 - 12$
$4 - 16$

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 04:47 
А куда вы поменяли $2\mathbb N$ на $4\mathbb N$? Мы «вычитали» первое, разве нет?

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 04:50 
Аватара пользователя
arseniiv в сообщении #976615 писал(а):
А куда вы поменяли $2\mathbb N$ на $4\mathbb N$? Мы вычитали первое, разве нет?

Объясните Ваши тезисы на конкретных элементах множеств.

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 04:53 
Вообще-то это вы операцию пытались ввести построение предлагали. Я его описание так понял: даны два множества $A,B$, мы выбираем инъекцию $f\colon A\to B$ и должны получить в результате $f(A) = B$, если они равномощны. Это, разумеется, неверно. Что вы тогда имели в виду?

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 05:22 
Аватара пользователя
arseniiv в сообщении #976619 писал(а):
Что вы тогда имели в виду?

Я предложил заменить многочисленные "в момент $1/n$", "вынимаем n-й шар и кладём 2 шара" и т.д. одной универсальной конструкцией:
atlakatl в сообщении #976362 писал(а):
Есть два счётных множества. Между ними всегда можно установить взаимно-однозначное соответствие. Значит, их разность равна нулю.

И привёл конкретные примеры.

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 05:29 
А какой смысл в словах «их разность равна нулю» тогда? Между бесконечными равномощными множествами есть как биекции, так и инъекции, не являющиеся биекциями.

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 05:37 
Аватара пользователя
arseniiv в сообщении #976630 писал(а):
Между бесконечными равномощными множествами есть как биекции, так и инъекции, не являющиеся биекциями.

В третий раз прошу: приведите конкретный пример.
Ещё раз: Почему-то никто не приводит формальные матаргументы, когда приводят рассуждения "на пальцах". А стоило мне обобщить "пальцевые" рассуждения, то посыпались теоретико-множественные аналогии. Так как моё обобщение выросло на основе "пальцев", и Вы проведите обратный процесс: перейдите от теории к "пальцам", - на конкретных примерах.

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 06:04 
atlakatl в сообщении #976632 писал(а):
В третий раз прошу: приведите конкретный пример.
Да я уже и сам окончательно запутался, о чём мы пытались говорить.

atlakatl в сообщении #976632 писал(а):
Так как моё обобщение выросло на основе "пальцев", и Вы проведите обратный процесс: перейдите от теории к "пальцам", - на конкретных примерах.
Скажите, что именно перевести в пальцы — переведу (уже через полдня где-то только). То, что бесконечное множество по определению равномощно какому-то своему собственному подмножеству? То, что биекция в собственное подмножество $X$ не будет биекцией в $X$?

-- Ср фев 11, 2015 08:05:58 --

А, я цитату упустил.
arseniiv в сообщении #976630 писал(а):
Между бесконечными равномощными множествами есть как биекции, так и инъекции, не являющиеся биекциями.
Пример: учетверение. Между $\mathbb N$ и $2\mathbb N$.

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 06:18 
Аватара пользователя
arseniiv в сообщении #976642 писал(а):
Пример: учетверение. Между $\mathbb N$ и $2\mathbb N$.

Так бывает: вам понятно, о чем вы говорите, а мне нет. И непонятно будет, даже если вы теми же словами (уже в 3-й раз), будете это писать.
Есть два множества $1, 2,  3, 4, 5, ...$ и $2, 4, 6, 8, 10, ...$ Что дальше? - Какое учетверение и т.д.?

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 07:54 
Задача Литлвуда эквивалентна задаче найти сумму ряда $ \sum\limits_{n=1}^\infty{(-1)^n}$
Ну что, расходимся? :wink:

 
 
 
 Re: Догонит ли черепаха Ахиллеса?
Сообщение11.02.2015, 08:07 
Аватара пользователя
Lukum в сообщении #976669 писал(а):
Задача Литлвуда эквивалентна задаче найти сумму ряда $ \sum\limits_{n=1}^\infty{(-1)^n}$

Это попытка пошутить?

 
 
 
 Re: Чепуха про разности и другая чепуха
Сообщение11.02.2015, 19:56 
atlakatl в сообщении #976647 писал(а):
Есть два множества $1, 2,  3, 4, 5, ...$ и $2, 4, 6, 8, 10, ...$ Что дальше? - Какое учетверение и т.д.?
Такое: $1\mapsto4,2\mapsto8,3\mapsto12,\ldots$ — вы его выше уже и сами писали. А элементы $2,6,10,14,\ldots$ прообраза (такого $x$, что $f(x)$ — данный элемент) не имеют. Не биекция.

 
 
 [ Сообщений: 30 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group