2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Решение системы методом Крамера
Сообщение27.01.2015, 13:39 
Аватара пользователя
ИСН в сообщении #969190 писал(а):
Верно. Теперь найдите их все.

Если делать как примеру, то наверно должно быть так:
$$\begin{cases}
2x_1 - x_2 = x_3\\
3x_1+ 2x_2= -3x_3 \\
x_1+ 3x_2 = -4x_3
\end{cases}$$
А $\Delta x_1$, $\Delta x_2$, $\Delta x_3$ Как искать?

$\Delta x_1 =$ $$\begin{bmatrix}
 2&-1&x_3 \\
 3&2  &-3x_3 \\
 1&3  &-4x_3 
\end{bmatrix}$$
Случайно не так?

 
 
 
 Re: Решение системы методом Крамера
Сообщение27.01.2015, 13:48 
Аватара пользователя
Доведите какой-нибудь вариант до конца.

 
 
 
 Re: Решение системы методом Крамера
Сообщение27.01.2015, 13:56 
Аватара пользователя
ИСН в сообщении #969201 писал(а):
Доведите какой-нибудь вариант до конца.

Так я не знаю как именно. То что я выше написал совсем не то?

 
 
 
 Re: Решение системы методом Крамера
Сообщение27.01.2015, 14:08 
Аватара пользователя
Если Вы доведёте какое-нибудь решение до логического конца, то сразу и увидите, то или не то. Вы же сюда пришли за знанием, а чего стоит знание, если его надо каждый раз проверять, вопрошая оракул?

 
 
 
 Re: Решение системы методом Крамера
Сообщение27.01.2015, 15:18 
IDontKnow в сообщении #969196 писал(а):
Случайно не так?
Как бы это так выразить... Почему б вам, IDontKnow, не почитать ну хоть какой-нибудь учебник? Пример решить вам тут помогут, но, при всём уважении к форуму, учебника он не заменит.
Кстати говоря, оттуда вы узнаете, что это
IDontKnow в сообщении #969164 писал(а):
Так как $r<n$ , то система имеет бесчисленное множество решений
не совсем так. Вот вам пример двух уравнений с десятью неизвестными:$\begin{cases}x_1=1\\2x_1=3\end{cases}$

 
 
 
 Re: Решение системы методом Крамера
Сообщение27.01.2015, 16:58 
Аватара пользователя
iifat в сообщении #969243 писал(а):
IDontKnow в сообщении #969196 писал(а):
Случайно не так?
Как бы это так выразить... Почему б вам, IDontKnow, не почитать ну хоть какой-нибудь учебник? Пример решить вам тут помогут, но, при всём уважении к форуму, учебника он не заменит.
Кстати говоря, оттуда вы узнаете, что это
IDontKnow в сообщении #969164 писал(а):
Так как $r<n$ , то система имеет бесчисленное множество решений
не совсем так. Вот вам пример двух уравнений с десятью неизвестными:$\begin{cases}x_1=1\\2x_1=3\end{cases}$


Откуда знаю? В самом первом сообщении я прислал пример. Насчет учебников- Я учусь на заочном и мне дали контрольную. На мой вопрос преподавателю где можно прочесть о том как это решается он ответил - в интернете найдешь. Ну вот я и нашел несколько статей, и параграф в книжке прочел. В итоге и решил обратиться сюда за помощью, чтобы хоть кто-нибудь смог мне объяснить как такое решается. Если вас не затруднит, то пришлите мне ссылку на учебник, в котором доступным языком для человека, который не силен в математике, было бы написано как решаются такие системы. Премного благодарен

 
 
 
 Re: Решение системы методом Крамера
Сообщение27.01.2015, 17:10 
Обычно для заочников пишутся методички, спросите, может есть такие.
Вобще заочникам лучше читать не учебники, а решебники, типа Данко П.Е., Попов А.Г., Кожевникова Т.Я. - Высшая математика в упражнениях и задачах. Части 1 и 2

 
 
 
 Re: Решение системы методом Крамера
Сообщение27.01.2015, 18:10 
mihailm в сообщении #969321 писал(а):
заочникам лучше читать не учебники, а решебники
Сугубое имхо: если вы хотите знать — стоит читать именно учебники. [url="http://dxdy.ru/topic12437.html"]Вот[/url], например, посмотрите. Если хотите сдать, а знать нет — проще, имхо, заплатить. На всякий случай: я таки знаю, сколько бесполезной ерунды задают заочникам.

 
 
 
 Re: Решение системы методом Крамера
Сообщение27.01.2015, 20:37 
Боревич З.И. - Определители и матрицы
Очень хорошая книжка для ознакомления с предметом, на мой взгляд. Написана очень понятно и доступно.
http://rutracker.org/forum/viewtopic.php?t=2928224

 
 
 
 Re: Решение системы методом Крамера
Сообщение28.01.2015, 06:57 
Аватара пользователя
iifat в сообщении #969392 писал(а):
mihailm в сообщении #969321 писал(а):
заочникам лучше читать не учебники, а решебники
Сугубое имхо: если вы хотите знать — стоит читать именно учебники. [url="http://dxdy.ru/topic12437.html"]Вот[/url], например, посмотрите. Если хотите сдать, а знать нет — проще, имхо, заплатить. На всякий случай: я таки знаю, сколько бесполезной ерунды задают заочникам.

Desmond в сообщении #969544 писал(а):
Боревич З.И. - Определители и матрицы
Очень хорошая книжка для ознакомления с предметом, на мой взгляд. Написана очень понятно и доступно.
http://rutracker.org/forum/viewtopic.php?t=2928224

Спасибо большое, ознакомлюсь

 
 
 [ Сообщений: 25 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group