2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Метод сопряженных направлений нулевого порядка
Сообщение11.01.2015, 20:52 
Аватара пользователя
Здравствуйте. Мне нужно реализовать метод сопряженных направлений нулевого порядка для нахождения минимума функции от двух переменных. Я хотел бы узнать тот ли это метод (http://tinyurl.com/qfa3qk2) ? Меня немного смущает выражение - нулевого порядка. Что интересно это значит?

 
 
 
 Re: Метод сопряженных направлений нулевого порядка
Сообщение14.01.2015, 09:20 
Аватара пользователя
Первые два шага таковы:
Цитата:
1. Вычисляется антиградиент в произвольной точке $x_0$.
$d_0 = r_0 = -f'(x_0)$
2. Осуществляется спуск в вычисленном направлении пока функция уменьшается, иными словами, поиск $a_i$, который минимизирует
$f(x_i+a_i d_i)$

Как искать $a_i$, нужно идти маленькими шажками в направлении антиградиента пока функция не начнет расти, или же есть более эффективный способ найти $a_i$?

 
 
 
 Re: Метод сопряженных направлений нулевого порядка
Сообщение14.01.2015, 21:45 
Аватара пользователя
netang в сообщении #960140 писал(а):
Меня немного смущает выражение - нулевого порядка. Что интересно это значит?

Правильно смущает. Метод сопряжённых градиентов есть метод первого порядка, поскольку использует производные. Хотя их можно как-то аппроксимировать через значения функции. При описании метода нулевого порядка градиент не используется.

 
 
 
 Re: Метод сопряженных направлений нулевого порядка
Сообщение15.01.2015, 22:29 
Аватара пользователя
мат-ламер в сообщении #962233 писал(а):
При описании метода нулевого порядка градиент не используется.

Пробовать шагать в разные стороны и выбирать лучшее минимизирующее направление из имеющихся?
Изображение

 
 
 
 Re: Метод сопряженных направлений нулевого порядка
Сообщение17.01.2015, 16:06 
Аватара пользователя
netang в сообщении #962813 писал(а):
Пробовать шагать в разные стороны и выбирать лучшее минимизирующее направление из имеющихся?

Как мне кажется, такой подход будет хуже, чем просто аппроксимировать производные в методе сопряжённых градиентов.

 
 
 
 Re: Метод сопряженных направлений нулевого порядка
Сообщение17.01.2015, 22:34 
netang в сообщении #960140 писал(а):
Меня немного смущает выражение - нулевого порядка. Что интересно это значит?
В методе нулевого порядка можно использовать только значения функции.
То есть, если я минимизирую $f(x) = x^3 +2 x$, то я не могу вычислять производную по формуле $f'(x) = 3 x^2 +2$, а должен использовать $f'(x) = \frac {f(x+h) - f(x)}{h}$.

 
 
 
 Re: Метод сопряженных направлений нулевого порядка
Сообщение02.02.2015, 21:30 
Аватара пользователя
Спасибо за ответы, суть метода я понял, но к сожалению эту лабораторную не сдал, но ничего :-)

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group