2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Уравнение в частных производных
Сообщение29.12.2014, 16:43 
Аватара пользователя
Я уже отчаялся решить эту задачу, помогите довести ее до конца. Условие: найти поверхность, удовлетворяющую данному уравнению и проходящую через данную линию.

$(y+2z^2)\frac{\partial z}{\partial x} - 2x^2 z \frac{\partial z}{\partial y} = x^2$
Условия задачи Коши: $x=z, y = x^2$

Сначала хочу для себя определить, что значит "поверхность проходит через заданную линию"? Линия задается пересечением поверхностей $x=z$ и $y=x^2$, и через эту линию пересечения должна пройти искомая поверхность? Вчера в одном из примеров так и получилось: поверхность прошла через линию пересечения двух плоскостей.

Составляю систему:

$\frac{dx}{y+2z^2} = \frac{dy}{-2x^2 z} = \frac{dz}{x^2}$

Находим первые интегралы.

1) Рассмотрим вторую и третью дроби

$\frac{dy}{-2x^2 z} = \frac{dz}{x^2}$

$\frac{dy}{-2z} = dz$

$dy = -2zdz$

$y = -z^2 + C_1$

2) Рассмотрим дроби $\frac{dx}{y+2z^2} = \frac{dz}{x^2}$ и подставим выражение $y = -z^2 + C_1$:

$\frac{dx}{-z^2 + C_1 + 2z^2} = \frac{dz}{x^2}$

$\frac{dx}{z^2 + C_1} = \frac{dz}{x^2}$

$x^2 dx = (z^2 + C_1)dz$

$\frac{1}{3}x^3 = \frac{1}{3}z^3 + C_1 z + C_2$

$\left\{
\begin{array}{rcl}
 &x^3 - z^3 - 3C_1 z= C_2& \\
 &C_1=y+z^2& \\
\end{array}
\right.$

$x^3 - z^3 - 3(y+z^2)z = C_2$

$x^3 - z^3 - 3yz - 3z^3 = C_2$

$x^3 - 4z^3 - 3yz = C_2$

Еще раз выпишу оба первых интеграла:

$C_1 = y+z^2$ и $C_2 = x^3 - 4z^3 - 3yz$

и условие задачи Коши:

$\left\{
\begin{array}{rcl}
 &x=z& \\
 &y=x^2& \\
\end{array}
\right.$

Решение задачи Коши:

$C_1 = x^2 + z^2$

$C_2 = z^3 - 4z^3 - 3x^2 z$

$C_2 = -3z^3 - 3x^2 z$

$C_2 = -3z(z^2 + x^2)$

Видим, что в скобках получилось выражение для $C_1$:

$C_2 = -3C_1 z$

Но $C_2$ надо выразить только через $C_1$, и $z$ мешает это сделать. Я не вижу, как можно исключить переменную $z$: откуда бы я ни выражал ее, она выражается через какую-то еще переменную.

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 17:12 
Аватара пользователя
Nurzery[Rhymes] в сообщении #954104 писал(а):
$C_1 = y+z^2$ и $C_2 = x^3 - 4z^3 - 3yz$
и условие задачи Коши:
$\left\{
\begin{array}{rcl}
&x=z& \\
&y=x^2& \\
\end{array}
\right.$


У Вас из уравнения кривой можно выразить и $x$, и $y$ через $z$. Только после этого подставьте их в $C_1$, $C_2$.

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 17:20 
Аватара пользователя
Red_Herring в сообщении #954113 писал(а):
У Вас из уравнения кривой можно выразить и $x$, и $y$ через $z$. Только после этого подставьте их в $C_1$, $C_2$.


А где у меня это уравнение кривой? Я получил два первых интеграла, и решением системы будет любая функция от этих двух функций. Но это поверхность, а не кривая. Кривая - это пересечение двух поверхностей из условия задачи Коши?
Из
$\left\{
\begin{array}{rcl}
&x=z& \\
&y=x^2& \\
\end{array}
\right.$

мне надо сделать так?
$\left\{
\begin{array}{rcl}
&x=z& \\
&y=z^2& \\
\end{array}
\right.$

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 17:24 
Аватара пользователя
Nurzery[Rhymes] в сообщении #954116 писал(а):
мне надо сделать так?
$\left\{
\begin{array}{rcl}
&x=z& \\
&y=z^2& \\
\end{array}
\right.$

Именно

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 17:31 
Аватара пользователя
Тогда получается так: $x=z$ и $y=z^2$

$C_1 = z^2 + z^2 = 2z^2$

$C_2 = z^3 - 4z^3 - 3z^2 z = -6z^3$

Теперь из $C_1 = 2z^2$ выразить $z$ и подставить его в $C_2 = -6z^3$?

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 17:40 
Аватара пользователя
Nurzery[Rhymes] в сообщении #954119 писал(а):
Теперь из $C_1 = 2z^2$ выразить $z$ и подставить его в $C_2 = -6z^3$?

Да. и доделайте задачу до конца вместо того чтобы переспрашивать на каждом шаге.

Уравнения которые Вы рассматриваете даже не "настоящие УЧП", и часто рассматриваются в курсе ОДУ

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 18:10 
Аватара пользователя
Получился плохой ответ.

${C}_{1} = 2z^2 \Rightarrow z= (\frac{1}{2}C_1)^{\frac{1}{2}}$

$C_2 = -6z^3 = -6((\frac{1}{2}C_1)^{\frac{1}{2}})^3 = -6(\frac{1}{2}C_1)^{\frac{3}{2}} = -6\sqrt{(\frac{1}{2}C_1)^3}$

Подставляю вместо $C_1$ и $C_2$ то, чему оно равняется:

$x^3 - 4z^3 - 3yz = -6\sqrt{(\frac{1}{2}(y+z^2))^3}$

А какой учебник можно почитать о решении таких уравнений? С большим количеством примеров. В Филиппове описан общий метод и приведен очень простой пример. В более сложных примерах как хочешь - так и выпутывайся, Филиппова это не волнует.

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 18:20 
Аватара пользователя
Nurzery[Rhymes] в сообщении #954144 писал(а):
...
А какой учебник можно почитать о решении таких уравнений? С большим количеством примеров. ...

Вот что я нагуглил (и еще "Результатов: примерно 52 400 (0,47 сек.) " по запросу "примеры решения уравнений с частными производными первого порядка".

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 18:29 
Аватара пользователя
Brukvalub в сообщении #954147 писал(а):
Nurzery[Rhymes] в сообщении #954144 писал(а):
...
А какой учебник можно почитать о решении таких уравнений? С большим количеством примеров. ...

Вот что я нагуглил (и еще "Результатов: примерно 52 400 (0,47 сек.) " по запросу "примеры решения уравнений с частными производными первого порядка".

Там на странице 88 непонятно, что происходит в фигурных скобках. И еще: "подставляя значения первых интегралов, получаем решение задачи Коши". Что это за значения? Как их найти?
Судя по концу файла (1), у меня уже есть эта методичка - видимо, я посмотрел, что автор не может доходчиво объяснять и не обратил на нее внимание.
Было бы желание - можно разобраться и по такому мануалу? А зачем тратить на это больше сил, если можно изначально сделать хорошую, подробную методичку с многочисленными пояснениями?

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 18:32 
Аватара пользователя
Прекрасное объяснение этой темы на примерах есть в соотв. томе Антидемидовича (том про дифуры).

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 18:40 

(Оффтоп)

Nurzery[Rhymes] в сообщении #954152 писал(а):
А зачем тратить на это больше сил, если можно изначально сделать хорошую, подробную методичку с многочисленными пояснениями?

Сделайте. И только тогда начинайте говорить, как надо.

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 18:41 
Аватара пользователя
Nurzery[Rhymes] в сообщении #954152 писал(а):
Там на странице 88 непонятно, что происходит в фигурных скобках

Где "там"? Вы в состоянии нормально указать книгу?
Nurzery[Rhymes] в сообщении #954152 писал(а):
я посмотрел, что автор не может доходчиво объяснять и не обратил ..

Мне кажется, что вместо того чтобы жаловаться на учебники (и зная А.Ф.Филиппова я уверен что Ваша критика незаслужена) Вам следует обратить внимание на свою явно недостаточную подготовку и привычку, чтобы Вас водили за ручку

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 18:54 
Аватара пользователя
Red_Herring в сообщении #954160 писал(а):
Где "там"? Вы в состоянии нормально указать книгу?


Brukvalub в сообщении #954147 писал(а):
Вот что я нагуглил (и еще "Результатов: примерно 52 400 (0,47 сек.) " по запросу "примеры решения уравнений с частными производными первого порядка".


Цитата:
привычку, чтобы Вас водили за ручку

Тогда дайте книгу, где подробно объясняется алгоритм решений таких диффуров, в том числе есть ответы на вопросы - что, зачем и почему (например, как учебник Краснова, в котором такой темы нет), и потребность в людях отпадет.

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 19:01 
Аватара пользователя

(Оффтоп)

Зря Вы так на Nurzery[Rhymes] набросились! Он-то, как раз, честно пашет и старается разобраться, что нетипично на фоне большинства нынешних студиузов! Да и перлы нехилые выдает! Чего стОит, например, "потребность в людях отпадет"! :D

 
 
 
 Re: Уравнение в частных производных
Сообщение29.12.2014, 19:02 
Аватара пользователя
Кстати, в этой теме много вопросов без ответа. Например, почему при нахождении первых интегралов допустимо умножать и делить на функции? В обычных алгебраических уравнениях домножение на неизвестную может привести к появлению лишних решений. Почему здесь при умножении на переменные можно быть уверенным, что интеграл будет тот, который нужен? И почему подразумевается, что мы должны знать это без всякого объяснения?

 
 
 [ Сообщений: 17 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group