2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Уравнения в частных производных
Сообщение19.12.2014, 21:46 
Аватара пользователя
Помогите разобраться в решении уравнений в частных производных. Сейчас я решаю такое уравнение:

$y\frac{dz}{dx}-x\frac{dz}{dy}=0$

Выполняю действия, смысл которых не понимаю. Надо свести это уравнение к системе в симметрической записи:

$\frac{dx}{y}=-\frac{dy}{x}=\frac{dz}{0}$

Почему мы составляем ее именно так? Из примеров я понял принцип: знаменатель дифференциалов вида $\frac{dz}{dx}$ делим на то, что умножается на этот дифференциал, но я не понимаю, почему так надо делать. Не вижу, каким способом можно получить исходное уравнение из этой системы.

В общем, решаю первое уравнение:

$\frac{dx}{y}=-\frac{dy}{x}$

$ydy=-xdx$

$\frac{y^2}{2}=-\frac{x^2}{2}+C$

Я все делаю правильно? Что делать дальше?

-- 19.12.2014, 22:57 --

Еще я не понимаю смысл символа $\frac{dz}{0}$. Как может быть дифференциал функции по нулю? Что это значит? В состав дифференциала входит производная - отношение приращения функции к приращению аргумента, а в этой записи получается отношение дифференциала к нулю.

 
 
 
 Re: Уравнения в частных производных
Сообщение19.12.2014, 21:58 
Nurzery[Rhymes] в сообщении #949624 писал(а):
Помогите разобраться в решении уравнений в частных производных.
Интересно, но после этой фразы частные производные пропадают начисто: и из записи, и из смысла (частная производная не является отношением двух дифференциалов).

 
 
 
 Re: Уравнения в частных производных
Сообщение19.12.2014, 22:07 
Аватара пользователя
Это получается из того, что для этого уравнения существуют кривые, производные вдоль которых нулевые. Эти кривые называются характеристиками, вот симметрический вид как раз их и задает.

 
 
 
 Re: Уравнения в частных производных
Сообщение19.12.2014, 22:09 
Аватара пользователя
Для начала, Вы неправильно записываете частные производные. Следует вместо dписать \partial (с пробелом после) \frac{\partial z}{\partial x}

Теперь по существу: если у Вас уравнение имеет вид $a \frac{\partial z}{\partial x}  + b \frac{\partial z}{\partial y}=0$, то если мы придадим $x,y$ приращения $dx=adt$, $dy=bdt$, то $dz= \frac{\partial z}{\partial x}dx+ \frac{\partial z}{\partial y}dy$ (по правилу дифференцирования сложной функции) т.е. $dz= (a\frac{\partial z}{\partial x}+ b\frac{\partial z}{\partial y})dt=0$. Т.е. это придаёт смысл действиям
Nurzery[Rhymes] в сообщении #949624 писал(а):
Выполняю действия, смысл которых не понимаю.


Теперь, когда Вы получили
Nurzery[Rhymes] в сообщении #949624 писал(а):
$\frac{y^2}{2} + \frac{x^2}{2}=C$

мы видим что интегральные линии "нумеруются" параметром $C$ причём однозначно (ясно, что они окружности, но это не суть важно). И вдоль них $dz=0$ т.е. $z$ постоянно (это Вы забыли). Т.е. $z$ зависит только от линии, но не от положения на ней. А что нумерует линию? $x^2+y^2 $ ($=2C$). Т.е. $z=f(x^2+y^2)$ где $f$ — произвольная функция.

ЧИТАЙТЕ УЧЕБНИК

 
 
 
 Re: Уравнения в частных производных
Сообщение19.12.2014, 22:17 
Аватара пользователя
Посоветуйте учебник, который я бы почитал. У Краснова и Пискунова этих тем нет. У последнего есть уравнения мат. физики, но по оглавлению я там не увидел уравнений в частных производных. Нашему преподу, похоже, вообще плевать на то, что половина из нас ничего не понимает. Он сам работает в основном в биоинформатике, а универ для него, похоже, просто развлечение, куда он приходит шутковать на парах, рассуждать о превосходстве над гуманитариями и повышать свою значимость.

 
 
 
 Re: Уравнения в частных производных
Сообщение19.12.2014, 22:21 
Аватара пользователя
Nurzery[Rhymes] в сообщении #949635 писал(а):
Посоветуйте учебник, который я бы почитал.

А как можно советовать, если не знать Вашего уровня, специальности и прочего?

 
 
 
 Re: Уравнения в частных производных
Сообщение19.12.2014, 22:25 
Аватара пользователя
Red_Herring в сообщении #949636 писал(а):
Nurzery[Rhymes] в сообщении #949635 писал(а):
Посоветуйте учебник, который я бы почитал.

А как можно советовать, если не знать Вашего уровня, специальности и прочего?

Посоветуйте не очень сложный. Специальность - компьютерная безопасность, у нас главные предметы - это алгебра и теория чисел, а диффуры не очень важный.

 
 
 
 Re: Уравнения в частных производных
Сообщение20.12.2014, 10:01 
Nurzery[Rhymes] в сообщении #949624 писал(а):
производных. Сейчас я решаю такое уравнение:

$y\frac{dz}{dx}-x\frac{dz}{dy}=0$

$z(x,y)$ это первый интеграл системы уравнений $\dot x=y,\quad \dot y=-x$

 
 
 
 Re: Уравнения в частных производных
Сообщение20.12.2014, 11:10 
Аватара пользователя
Уравнения в частных производных 1-го порядка традиционно рассматриваются в учебниках по ОДУ, так что см. учебник Степанова, Филиппова и т.п. по ОДУ.

 
 
 
 Re: Уравнения в частных производных
Сообщение20.12.2014, 15:06 
Аватара пользователя
Brukvalub в сообщении #949772 писал(а):
Уравнения в частных производных 1-го порядка традиционно рассматриваются в учебниках по ОДУ

В России. В США/Канаде это не так. И, разумеется, речь идёт о вещественных уравнениях и о гладких решениях

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group