2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Дифгеом, Дробно-линейное преобразование.
Сообщение27.11.2014, 12:35 
Показать, что движение, заданное как дробно-линейное проеобразование разлагается в композицию четного числа симметрий относительно прямой. Показать, что можно обойтись двумя симметриями.
Как задаются дробно-линейные преобразования и как они работают, я разобрался. Например, каким образом связать эти преобразования с движением. Однако, как разобраться с симметрией относительно прямой?

 
 
 
 Re: Дифгеом, Дробно-линейное преобразование.
Сообщение27.11.2014, 12:40 
Аватара пользователя
Дробно-линейное преобразование (если мы об одном и том же говорим) может унести точку на бесконечность. Какая симметрия относительно прямой или комбинация таковых может унести точку на бесконечность?

 
 
 
 Re: Дифгеом, Дробно-линейное преобразование.
Сообщение27.11.2014, 12:53 
ИСН в сообщении #936781 писал(а):
Дробно-линейное преобразование (если мы об одном и том же говорим) может унести точку на бесконечность. Какая симметрия относительно прямой или комбинация таковых может унести точку на бесконечность?

Даже в геометрии Лобачевского? Тогда какой смысл у данной композиции симметрий?

 
 
 
 Re: Дифгеом, Дробно-линейное преобразование.
Сообщение27.11.2014, 12:59 
Аватара пользователя
Ах, это. Ну, если в Лобачевском, то не знаю.

 
 
 
 Re: Дифгеом, Дробно-линейное преобразование.
Сообщение27.11.2014, 17:22 
Аватара пользователя
ИСН в сообщении #936781 писал(а):
Дробно-линейное преобразование (если мы об одном и том же говорим) может унести точку на бесконечность. Какая симметрия относительно прямой или комбинация таковых может унести точку на бесконечность?
В условии оговорено, что рассматриваются только те дробно-лин. отображения, которые являются движениями, то есть сохраняют бесконечность. Такие отображения имеют специфический вид, чем и нужно воспользоваться.

 
 
 
 Re: Дифгеом, Дробно-линейное преобразование.
Сообщение27.11.2014, 20:37 
Brukvalub в сообщении #936888 писал(а):
ИСН в сообщении #936781 писал(а):
Дробно-линейное преобразование (если мы об одном и том же говорим) может унести точку на бесконечность. Какая симметрия относительно прямой или комбинация таковых может унести точку на бесконечность?
В условии оговорено, что рассматриваются только те дробно-лин. отображения, которые являются движениями, то есть сохраняют бесконечность. Такие отображения имеют специфический вид, чем и нужно воспользоваться.

Здесь получается, что дробно-линейные преобразования являющиеся движением отображают некий круг $E$ на себя. О каком специфическом виде идёт речь?

 
 
 
 Re: Дифгеом, Дробно-линейное преобразование.
Сообщение27.11.2014, 21:03 
Аватара пользователя
Brukvalub в сообщении #936888 писал(а):
которые являются движениями, то есть сохраняют бесконечность.
А куда переводит бесконечность преобразование $w=\dfrac{az+b}{cz+d}$?

 
 
 
 Re: Дифгеом, Дробно-линейное преобразование.
Сообщение28.11.2014, 10:13 
Как я понял, движение, являющееся композицией четного числа симметрий (не важно относительно чего) сохраняет ориентацию, следовательно это либо поворот, либо параллельный перенос.
Но как выглядит движение, задающаяся как дробно-линейное преобразование? В этом загвоздка.

 
 
 
 Re: Дифгеом, Дробно-линейное преобразование.
Сообщение28.11.2014, 11:04 
Аватара пользователя
mellom в сообщении #937304 писал(а):
Но как выглядит движение, задающаяся как дробно-линейное преобразование?
Да любое движение можно так представить. И даже не как дробно-. Вы про бесконечность подумали?

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group