2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13  След.
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение16.10.2014, 08:51 
Заслуженный участник
Аватара пользователя


28/09/06
10849
KVV в сообщении #919378 писал(а):
В реальной Вселенной сингулярностей нет.
Интересный факт заключается в том, что «в» нереальных вселенных их тоже нет. Зато они бывают «у» нереальных вселенных.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение16.10.2014, 09:02 


02/11/11
1310
epros в сообщении #919434 писал(а):
KVV в сообщении #919378 писал(а):
В реальной Вселенной сингулярностей нет.
Интересный факт заключается в том, что «в» нереальных вселенных их тоже нет. Зато они бывают «у» нереальных вселенных.

Да, точно.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение16.10.2014, 12:33 
Аватара пользователя


10/12/11
2427
Москва

(Оффтоп)

KVV в сообщении #919378 писал(а):
Ощущение, что schekn - это Лавров.
Или Чуркин.
Такое сравнение для меня большая честь.
Такое ощущение, что вы Яценюк. Несете пургу даже не разобравшись в дискуссии.


-- 16.10.2014, 12:34 --

epros в сообщении #919434 писал(а):
Интересный факт заключается в том, что «в» нереальных вселенных их тоже нет. Зато они бывают «у» нереальных вселенных.

Бывают также в некорректно построенных теориях.

-- 16.10.2014, 12:47 --

SergeyGubanov в сообщении #919170 писал(а):
Это из соседней ветки topic88205.html . ОТО запрещает стабильное существование материальных небесных тел размером меньше их гравитационного радиуса (они очень быстро коллапсируют). В частности, запрещено существование точечных материальных частиц конечной массы.

Понятие "Точечный источник" фигурирует в статьях по ОТО: например в самой первой статье (она же и последняя) Шварцшильда по данной теме ( у него даже в название статьи входит слово " точечная масса" ). Также оно есть у Ландау в пар 105-106 , где он рассматривает линеаризованные уравнения поля. Это все таки абстракция и наверное имеет смысл говорить о минимальном радиусе массивного тела. Это такая же абстракция , как бесконечная плоскость с нулевой толщиной, о которой мы дискутировали в другой теме. Вопрос : куда исчезают нуклоны под гравитационным радиусом так и остался без ответа.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение16.10.2014, 18:27 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Имеет смысл говорить о том, что schekn до сих пор не удосужился разобраться, что такое линеаризованная теория.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение16.10.2014, 19:49 
Аватара пользователя


10/12/11
2427
Москва
Munin в сообщении #919615 писал(а):
Имеет смысл говорить о том, что schekn до сих пор не удосужился разобраться, что такое линеаризованная теория.

Ваши краткие отчеты, кто разобрался, а кто несет пургу не продвигают нас к правильному пониманию чего бы то ни было. Если в моем комментарии Вас что-то не устроило, Вы не стесняйтесь в комментариях, главное не хамите.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение16.10.2014, 21:22 
Заслуженный участник
Аватара пользователя


30/01/06
72407
schekn в сообщении #919656 писал(а):
Ваши краткие отчеты, кто разобрался, а кто несет пургу не продвигают нас к правильному пониманию чего бы то ни было.

К правильному пониманию продвигает чтение учебников и самостоятельная работа над выкладками. Но здесь вас наставить на путь истинный не представляется возможности, так что я опускаю руки.

А замечания мои - для тех, кто их понимает.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение17.10.2014, 18:33 
Аватара пользователя


10/12/11
2427
Москва
Munin в сообщении #919708 писал(а):
К правильному пониманию продвигает чтение учебников и самостоятельная работа над выкладками. Но здесь вас наставить на путь истинный не представляется возможности, так что я опускаю руки.

А замечания мои - для тех, кто их понимает.

Я не видел от Вас конструктивных замечаний. Они исходили от epros, Утундрий, Someone.
В принципе их точка зрения понятна. Но это не значит, что верная.
Учебники и самостоятельная работа это хорошо. Только чем дальше в лес, тем некоторые учебники подправить бы надо.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение17.10.2014, 21:53 
Заслуженный участник
Аватара пользователя


30/01/06
72407
schekn в сообщении #919916 писал(а):
Я не видел от Вас конструктивных замечаний.

Ну это проблема того, кто смотрит.

-- 17.10.2014 22:54:44 --

schekn в сообщении #919916 писал(а):
Учебники и самостоятельная работа это хорошо. Только чем дальше в лес, тем некоторые учебники подправить бы надо.

Нет. Сначала учебники надо освоить, а потом уже рассуждать о подправлении. Вы с первым этапом не справились.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение19.10.2014, 09:37 
Аватара пользователя


10/12/11
2427
Москва
Munin в сообщении #919976 писал(а):
Нет. Сначала учебники надо освоить, а потом уже рассуждать о подправлении

А Вас так не было, что читаешь какой-то параграф учебника , вроде все понятно. Открываешь другой или решаешь задачку и оказывается, что все понял неправильно и все надо пересмотреть. Либо уже упираешься , что учебник тот или иной некорректно описывает проблему?
Вот нашел случайно цитату из ЛЛ-2 пар. 103 (перед уравнениями 103.16):

"Наконец, покажем, каким образом полученными формулами
можно воспользоваться для решения поставленного в конце § 102
вопроса: построения наиболее полной системы отсчета для поля
точечной массы (1). "


Даже , если эта фраза не принадлежит Ландау, а его последователям , сути это не меняет и видно, что понятие "точечной массы"
фигурирует для данной модели поля в классических учебниках и диаграмма та же, что и привел Someone
post916375.html#p916375 в других координатах.
Непонятно, что все так взбеленились. Насчет построения наиболее полной СО я бы тут был поосторожнее, поскольку опытных
доказательств этого нет и скорее всего не будет.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение19.10.2014, 14:48 
Заслуженный участник
Аватара пользователя


30/01/06
72407
schekn в сообщении #920771 писал(а):
А Вас так не было, что читаешь какой-то параграф учебника , вроде все понятно. Открываешь другой или решаешь задачку и оказывается, что все понял неправильно и все надо пересмотреть.

Постоянно такое было.

Но винить в этом учебник - ребячество. Винить надо себя. Всегда.

schekn в сообщении #920771 писал(а):
Либо уже упираешься , что учебник тот или иной некорректно описывает проблему?

Это бывает очень редко, это нельзя распознать самому, а выясняется только после обсуждения с коллегами, и многие такие случаи известны просто наперечёт. Либо известно, что это плохой учебник.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение07.11.2014, 13:49 


07/05/10

993
Хочу подойти к проблеме уравнения ОТО с несколько других позиций. Имеем нелинейное уравнение ОТО для вакуума, т.е. $R_{\mu \nu}=0$. Решение ищем в виде $g_{\mu \nu}=\sum_l h_{\mu \nu l}(t)\varphi_{\mu \nu l}(x,y,z)$
Подставляем данное решение в уравнение ОТО, умножаем на величину $\varphi_{\lambda \delta k}$ и интегрируем по пространству. Получаем систему обыкновенных дифференциальных нелинейных уравнений относительно величины $h_{\mu \nu l}(t)$
$\frac{d^2 h_{\mu \nu l}(t)}{dt^2}=F_{\mu \nu l}(h_{\lambda \delta 1},...,h_{\lambda \delta N},\frac{d h_{\lambda \delta 1}}{dt},...,\frac{d h_{\lambda \delta N}}{dt}),l=1,...,N$
дифференцируем это уравнение по времени, подставляем вторую производную по времени и получаем систему дифференциальных уравнений
$\frac{d^2 y_{\mu \nu l}(t)}{dt^2}=G_{\mu \nu l}(y_{\lambda \delta 1},...,y_{\lambda \delta 2N}),l=1,...,,2N$
эта система нелинейных дифференциальных уравнений имеет конечное не нулевое решение, в общем случае комплексное. Причем оно описывает гравитационное поле без всякого ТЭИ.
Это свойство нелинейных уравнений. В случае электродинамики уравнения линейные и необходим источник излучения, излучающая антенна. Плоские волны это асимптотика излученных волн антенной. Поэтому источник волн необходим в случае линейных уравнений. В случае нелинейных уравнений источник поля не обязателен, в случае линейных уравнений без источника волн получается нулевое решение.
Именно поэтому нелинейные уравнения ОТО имеют решение для гравитационного поля без учета влияния материальных тел. Я называю такое поле остаточным. Причем тензор Римана - Кристоффеля может для такого поля не равняться нулю.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение07.11.2014, 18:40 
Заслуженный участник
Аватара пользователя


15/10/08
12499
evgeniy
Вы знаете, это всё очень напоминает "Я недавно сделал открытие и спешу им поделиться. Оказывается, в книгах печатают буквы! И, кроме того, они чёрные и разные!"

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение10.11.2014, 09:23 


07/05/10

993
Утундрий в сообщении #927897 писал(а):
evgeniy
Вы знаете, это всё очень напоминает "Я недавно сделал открытие и спешу им поделиться. Оказывается, в книгах печатают буквы! И, кроме того, они чёрные и разные!"


Утундрий Вы как всегда меня не понимаете. В моем сообщении я доказал, что нелинейные уравнения могут иметь остаточное поле, при внешних источниках равных нулю. Это означает, что существует гравитационное поле без наличия источников. Этого нет при решении линейных уравнений. Это и было предметом Вашего спора о вакуумных решениях уравнений ОТО.

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение10.11.2014, 09:34 
Заслуженный участник


20/07/09
4026
МФТИ ФУПМ
evgeniy в сообщении #929098 писал(а):
Это означает, что существует гравитационное поле без наличия источников. Этого нет при решении линейных уравнений.
Я правильно понял: электромагнитных волн не бывает?

 Профиль  
                  
 
 Re: Черная дыра или космологическая сингулярность?
Сообщение10.11.2014, 10:30 


07/05/10

993
Nemiroff в сообщении #929100 писал(а):
evgeniy в сообщении #929098

писал(а):
Это означает, что существует гравитационное поле без наличия источников. Этого нет при решении линейных уравнений. Я правильно понял: электромагнитных волн не бывает?

Решение линейных уравнений Максвелла без наличия внешнего воздействия не бывает. Как я понимаю, реликтовое излучение это следствие нелинейности уравнения их описывающих, это остаточное поле нелинейного уравнения электромагнитного поля.
Все эти слова основаны на исследовании решения нелинейных уравнений в частных производных.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 188 ]  На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: epros


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group