2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Попытка построить счетную сигма-алгебру*
Сообщение10.10.2014, 14:46 
Аватара пользователя
* в заголовке темы формулы почему-то не обрабатываются, поэтому написал "сигма-алгебра" вместо " $\sigma$-алгебра".

Ниже будет представлена попытка построить счетную $\sigma$-алгебру. Мне кажется, она удалась. Но, поскольку я вполне могу прохлопать ушами какую-нибудь тонкость, прошу проверить мои рассуждения.

Начнем с ограничений, с которыми нам придется считаться.
Теорема. Если в $\sigma$-алгебре $\Sigma$ найдется счетное множество попарно непересекающихся элементов, $\sigma$-алгебра $\Sigma$ не счетна.
В самом деле, пусть в $\Sigma$ найдется счетное множество $\Delta$ попарно непересекающихся элементов. Т.к. элементы $\Delta$ не пересекаются, все возможные их конечные и счетные объединения различны. Тогда множество всех таких объединений $\Theta$ равномощно системе всех подмножеств натурального ряда и, следовательно, континуально. По определению $\sigma$-алгебры, $\Theta \subset \Sigma$. Следовательно, $\Sigma$ не менее чем континуальна. Теорема доказана.

Итак, в счетной $\sigma$-алгебре должно быть лишь конечное число попарно непересекающихся элементов. Будем искать систему, у которой пересекаются все (непустые) элементы. Первая из таких систем, приходящая в голову – система, упорядоченная по включению, т.е. $A_1 \subset A_2 \subset A_3 \subset ...$ Но легко показать, что такая система не может быть даже кольцом.
Укажем еще одну трудность. Пусть $\Sigma = \{A_1, A_2, A_3...\}$ - счетная система множеств. Построим
$$
A = \bigcup_{i, k = 1}^\infty A_i \bigcap A_k (i \ne k)
$$

Т.к. мы строим $\sigma$-алгебру, $A$ тоже должно быть ее элементом. Но тогда ее элементами будут и $A_1\setminus A, A_2\setminus A, A_3\setminus A...$, которые по построению не пересекаются между собой! Единственный способ построить $\sigma$-алгебру, в которой все непустые элементы попарно пересекаются - сделать так, чтобы все $A_n\setminus A$, начиная с некоторого номера, были пусты. Проще всего этого добиться, потребовав, чтобы $A$ было единицей $\sigma$-алгебры.

Итак, мы будем построить $\sigma$-алгебру, у которой каждый (непустой) элемент пересекается с каждым (непустым), а объединение $A$ всех попарных пересечений различных элементов равно единице $\sigma$-алгебры. Мне такая $\sigma$-алгебра видится как последовательность фигур возрастающей размерности в бесконечномерном евклидовом пространстве.
Возьмем точку $A_1$, лежащую на отрезке $A_2$, сам отрезок $A_2$ и отрезок без точки $A_3$ = $A_2 \setminus A_1$. Потом добавим квадрат $A_4$, такой, что отрезок $A_2$ является его стороной, квадрат без отрезка $A_5 = A_4 \setminus A_2$, квадрат без точки $A_6 = A_4  \setminus A_1$, квадрат без отрезка, но с точкой $A_7 = A_4\setminus A_3$ потом куб, такой, что квадрат является его гранью, ну и так далее. Важно, что при введении объекта $A_k$ новой размерности $n$ (квадрата, куба...) операция вычитания из него уже существующих элементов $A_1, A_2, ... A_{k-1}$ исчерпывает новые множества, которые появляются в $\sigma$ -алгебре при его введении (поскольку все предыдущие множества являются его подмножествами). Можно вывести формулу $k = k(n)$, где $n$ - вновь вводимая размерность, $k$ - номер элемента, с которым эта размерность вводится. У меня трудно с прогрессиями, комбинаторикой, числами Фибоначчи и так далее, поэтому я ее выводить не стану. Важно, что для каждого $n$ номер $k$ будет конечным, и, следовательно, вся система - счетной.

Насколько я понимаю, получим счетную $\sigma$ -алгебру с бесконечномерным гиперкубом в качестве единицы. Вот бесконечномерный гиперкуб меня слегка смущает. Никогда всерьез не работал с бесконечномерными пространствами и не уверен, есть ли там вообще кубы (не возникает ли проблем со сходимостью ряда
$$
\sum_{i=1}^\infty (x_i^2 - y_i^2)
$$

корень из суммы которого должен дать расстояние между точками $x$ и $y$). Но можно взять и не куб, форма здесь не принципиальна.

Итак, счетная $\sigma$-алгебра построена. В самом деле, множество получилось счетное, замкнутое по объединению и дополнению (следовательно, по симметрической разности) и пересечению, причем замкнутое для любых счетных объединений и пересечений. Ура.
Или я свалял-таки где-то Ваньку?

 
 
 
 Re: Попытка построить счетную сигма-алгебру*
Сообщение10.10.2014, 17:52 
Аватара пользователя
У Вас есть счетная последовательность вложенных множеств $A_1\subset A_2\subset A_4\subset A_8\subset\dots$. Это значит, что у Вас есть и счетная последовательность непересекающихся множеств $A_1, A_3 = A_2\setminus A_1, A_5 = A_4\setminus A_2,\dots$. (точка, отрезок без точки, куб без отрезка, гиперкуб без куба и т. д.) А дальше у нас есть несчетное число их объединений.

 
 
 
 Re: Попытка построить счетную сигма-алгебру*
Сообщение12.10.2014, 20:35 
Аватара пользователя
Xaositect в сообщении #917289 писал(а):
У Вас есть счетная последовательность вложенных множеств $A_1\subset A_2\subset A_4\subset A_8\subset\dots$. Это значит, что у Вас есть и счетная последовательность непересекающихся множеств $A_1, A_3 = A_2\setminus A_1, A_5 = A_4\setminus A_2,\dots$. (точка, отрезок без точки, куб без отрезка, гиперкуб без куба и т. д.) А дальше у нас есть несчетное число их объединений.


Ай! Таки да, не заметил! Спасибо.
Ну ладно, а можно тогда доказать, что в любой $\sigma$-алгебре найдется счетная система попарно непересекающихся множеств? И тем самым - что счетных $\sigma$-алгебр вообще не существует?

 
 
 
 Re: Попытка построить счетную сигма-алгебру*
Сообщение13.10.2014, 11:50 
Аватара пользователя
Anton_Peplov в сообщении #918142 писал(а):
...
Ай! Таки да, не заметил! Спасибо.
Ну ладно, а можно тогда доказать, что в любой $\sigma$-алгебре найдется счетная система попарно непересекающихся множеств? И тем самым - что счетных $\sigma$-алгебр вообще не существует?
Нет, этого сказать нельзя. Тривиально строятся примеры конечных сигма-алгебр.

 
 
 
 Re: Попытка построить счетную сигма-алгебру*
Сообщение13.10.2014, 12:02 
Аватара пользователя
Anton_Peplov в сообщении #918142 писал(а):
Ну ладно, а можно тогда доказать, что в любой $\sigma$-алгебре найдется счетная система попарно непересекающихся множеств? И тем самым - что счетных $\sigma$-алгебр вообще не существует?
Да, счетных $\sigma$-алгебр не существует.

Brukvalub в сообщении #918413 писал(а):
Нет, этого сказать нельзя. Тривиально строятся примеры конечных сигма-алгебр.
Издержки терминологии. Лично я предпочитаю термин "не более чем счетное", если включаются конечные множества.

 
 
 
 Re: Попытка построить счетную сигма-алгебру*
Сообщение13.10.2014, 13:32 
Аватара пользователя
Xaositect в сообщении #918417 писал(а):
Anton_Peplov в сообщении #918142 писал(а):
Ну ладно, а можно тогда доказать, что в любой $\sigma$-алгебре найдется счетная система попарно непересекающихся множеств? И тем самым - что счетных $\sigma$-алгебр вообще не существует?
Да, счетных $\sigma$-алгебр не существует.

Brukvalub в сообщении #918413 писал(а):
Нет, этого сказать нельзя. Тривиально строятся примеры конечных сигма-алгебр.
Издержки терминологии. Лично я предпочитаю термин "не более чем счетное", если включаются конечные множества.


Хорошо, а можно набросок доказательства того, что счетных $\sigma$-алгебр не существует? Или ссылку на книжку, где это доказывается?

Под счетным множеством я имел в виду множество, равномощное натуральному ряду. Включение конечных множеств в класс счетных считаю лишним и неудобным.

 
 
 
 Re: Попытка построить счетную сигма-алгебру*
Сообщение13.10.2014, 13:38 
Anton_Peplov в сообщении #918439 писал(а):
Хорошо, а можно набросок доказательства того, что счетных $\sigma$-алгебр не существует? Или ссылку на книжку, где это доказывается?
http://math.stackexchange.com/questions ... -countable
Пойдёт?

 
 
 
 Re: Попытка построить счетную сигма-алгебру*
Сообщение13.10.2014, 15:32 
Аватара пользователя
Nemiroff в сообщении #918442 писал(а):
Anton_Peplov в сообщении #918439 писал(а):
Хорошо, а можно набросок доказательства того, что счетных $\sigma$-алгебр не существует? Или ссылку на книжку, где это доказывается?
http://math.stackexchange.com/questions ... -countable
Пойдёт?


Да, спасибо. Удивительно красивое доказательство.

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group