2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Асимптотическое равенство сумм и их элементов
Сообщение09.10.2014, 22:25 
Правильно ли я понимаю, что если $a_n \sim b_n$, то $\sum \limits_{k=1}^{n} {a_n} \sim \sum \limits_{k=1}^{n} {b_n}$? Если нет, то можно, пожалуйста, контрпример?
Рассуждая неформально, прихожу к выводу, что для любого $\varepsilon$ при достаточно больших $n > N$ будет $a_n (1-\varepsilon) \le b \le a_n (1+\varepsilon)$, то есть все дальнейшие суммы будут давать в отношении что-то между $1-\varepsilon$ и $1+\varepsilon$ плюс какая-то константа, сокрытая в элементах до $N$. Но вот как будет вести себя эта константа? Всегда ли она будет, так сказать "поглощаться" достаточным количеством элементов с номером большим $N$?

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение09.10.2014, 23:01 
$\dfrac 1{k^2}\sim \dfrac 1{(k+1)^2}$, но $\lim  \limits_{n\to \infty }\dfrac {\sum \limits _{k=1}^{n}\dfrac 1{k^2}}{\sum \limits _{k=1}^n \dfrac 1{(k+1)^2}}\ne 1$

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение09.10.2014, 23:25 
Аватара пользователя
А что насчет верности такого утверждения:
$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: 1-\varepsilon<\frac{\sum\limits_{k=N}^{+\infty}a_n}{\sum\limits_{k=N}^{+\infty}b_n}<1+\varepsilon$$

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение10.10.2014, 08:04 
Возьмём такую $\{b_n\}$, что $\lim\limits_{N\to +\infty} \sum\limits_{n=N}^{+\infty}b_n=0$. Обязательно ли при этом $\lim\limits_{N\to +\infty} \sum\limits_{n=N}^{+\infty}a_n=0$?

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение10.10.2014, 08:30 
fractalon в сообщении #917108 писал(а):
Правильно ли я понимаю, что если $a_n \sim b_n$, то $\sum \limits_{k=1}^{n} {a_n} \sim \sum \limits_{k=1}^{n} {b_n}$?

Правильно, если ряды расходятся, а если сходятся -- разумеется, нет (достаточно просто изменить одно слагаемое).

demolishka в сообщении #917120 писал(а):
А что насчет верности такого утверждения:
$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: 1-\varepsilon<\frac{\sum\limits_{k=N}^{+\infty}a_n}{\sum\limits_{k=N}^{+\infty}b_n}<1+\varepsilon$$

Верно.

(естественно, всё считается положительным)

-- Пт окт 10, 2014 09:32:50 --

Sender в сообщении #917152 писал(а):
Возьмём такую $\{b_n\}$, что $\lim\limits_{N\to +\infty} \sum\limits_{n=N}^{+\infty}b_n=0$.

А другую очень трудно найти, до невозможности трудно.

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение10.10.2014, 08:42 
Ох, лажу сморозил. :oops: Впрочем, найти контрпример не так уж трудно, если не накладывать условие всеобщей положительности.

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение10.10.2014, 09:10 
fractalon в сообщении #917108 писал(а):
Правильно ли я понимаю, что если $a_n \sim b_n$, то $\sum \limits_{k=1}^{n} {a_n} \sim \sum \limits_{k=1}^{n} {b_n}$?
Это теорема Штольца (https://ru.wikipedia.org/wiki/%D2%E5%EE ... B%FC%F6%E0), дискретный аналог правила Лопиталя.

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение10.10.2014, 09:13 
Sender в сообщении #917156 писал(а):
найти контрпример не так уж трудно, если не накладывать условие всеобщей положительности.

Дело в том, что это условие всегда подразумевается. Для эквивалентности функций оно (точнее, знакоопределённость) практически необходимо, т.к. функции практически всегда непрерывны. Для последовательностей -- вроде бы и нет, но и пользы от понятия эквивалентности в знакопеременном случае никакой.

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение10.10.2014, 12:13 
Всем спасибо за подробные разъяснения, особенно за ссылку на теорему Штольца!
Меня на самом деле интересовал конкретный случай $a_n=\frac{1}{n\ln{n} + \ln{n} + \ln\ln{n}}$ и $b_n=\frac{1}{n\ln{n}}$. Здесь суммы явно расходятся, так что должно работать.
Спасибо!

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение10.10.2014, 12:25 
fractalon в сообщении #917179 писал(а):
Меня на самом деле интересовал конкретный случай $a_n=\frac{1}{n\ln{n} + \ln{n} + \ln\ln{n}}$ и $b_n=\frac{1}{n\ln{n}}$.
Если что, асимптотику $\sum\limits_{k=1}^n a_n, \sum\limits_{k=1}^n b_n$ можно найти с помощью формулы Эйлера-Маклорена. В данном случае асимптотика суммы совпадает с асимптотикой интеграла, а асимптотика последних быстро выписывается интегрированием по частям. Ну, константы только найти не сможете просто так.

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение10.10.2014, 14:20 
Спасибо, я всё уже нашёл, интересовал именно этот тонкий момент.
Я просто оценил $\sum \limits_{k=1}^n {b_n}$ по целым частям логарифмов снизу и сверху, и благодаря тому, что $H_{\left \lfloor {e^n} \right \rfloor}-H_{\left \lfloor {e^{n-1}} \right \rfloor} \rightarrow 1$, всё свернулось в обычный гармонический ряд и асимптотики оценок совпали.

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение10.10.2014, 19:19 
Аватара пользователя
Sonic86
ну у Штольца есть особые условия на знаменатель

 
 
 
 Re: Асимптотическое равенство сумм и их элементов
Сообщение10.10.2014, 20:54 

(SpBTimes)

SpBTimes в сообщении #917341 писал(а):
Sonic86
ну у Штольца есть особые условия на знаменатель
Я не утверждал, что задача исчерпывается теоремой Штольца, я просто "распознал образ", т.е. показал, как можно часть задачи решить.

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group