2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 О разложении функций в пространстве L2
Сообщение18.09.2014, 08:39 
Аватара пользователя
Пусть $\{\varphi_i\}_{i=0}^\infty$ - ортонормированный базис в функциональном гильбертовом пространстве $L_2$. Известно, что для любой функции $f\in L_2$ выполняется равенство
$$f(x) = \sum_{i=0}^\infty {(f,\varphi_i)\varphi_i(x)}.$$
То есть для любой ограниченной функции $f(x)$ ряд $\sum_{i=0}^\infty {(f,\varphi_i)\varphi_i(x)}$ сходится к числу $f(x)$, и сумма его остатка стремится к 0 с увеличением $n$:
$$ \lim_{n\to\infty} { \sum_{i=n+1}^\infty {(f,\varphi_i)\varphi_i(x)} } = 0.$$
Тогда и по норме:
$$ \lim_{n\to\infty} \left\| \sum_{i=n+1}^\infty {(f,\varphi_i)\varphi_i(x)} \right\| = 0.$$
Вопрос: будет ли это же выполняться, если функция $f$ будет не фиксированной, а тоже изменяться вместе с $n$, например, $f(x)=x^n$:
$$ \lim_{n\to\infty} \left\| \sum_{i=n+1}^\infty {(x^n,\varphi_i)\varphi_i(x)} \right\| = 0 ?$$

 
 
 
 Re: О разложении функций в пространстве L2
Сообщение18.09.2014, 11:13 
Аватара пользователя
vladb314 в сообщении #909053 писал(а):
То есть для любой ограниченной функции $f(x)$ ряд $\sum_{i=0}^\infty {(f,\varphi_i)\varphi_i(x)}$ сходится к числу $f(x)$


Во-первых, нет, во-вторых, - при чём здесь ограниченность?

vladb314 в сообщении #909053 писал(а):
Вопрос: будет ли это же выполняться, если функция $f$ будет не фиксированной, а тоже изменяться вместе с $n$, например, $f(x)=x^n$:


Попробуйте рассмотреть какой-нибудь пример вроде $f_n=\varphi_{n+1}$.

 
 
 
 Re: О разложении функций в пространстве L2
Сообщение18.09.2014, 14:54 
Аватара пользователя
g______d в сообщении #909091 писал(а):
vladb314 в сообщении #909053 писал(а):
То есть для любой ограниченной функции $f(x)$ ряд $\sum_{i=0}^\infty {(f,\varphi_i)\varphi_i(x)}$ сходится к числу $f(x)$


Во-первых, нет, во-вторых, - при чём здесь ограниченность?



Как нет? Не понимаю... Если разложение справедливо, то и ряд сходится. Ограниченность нужна для того, что для неограниченных функций это не выполняется. Если функция ограничена, то любое её значение - конечное число. И сумма ряда равна конечному числу. Значит, ряд сходится.

g______d в сообщении #909091 писал(а):
vladb314 в сообщении #909053 писал(а):
Вопрос: будет ли это же выполняться, если функция $f$ будет не фиксированной, а тоже изменяться вместе с $n$, например, $f(x)=x^n$:


Попробуйте рассмотреть какой-нибудь пример вроде $f_n=\varphi_{n+1}$.


Посмотрел. Получается
$$\lim_{n\to\infty} {\left\| \sum_{i=n+1}^\infty (\varphi_{n+1},\varphi_i) \varphi_i \right\|} = \lim_{n\to\infty} \|\varphi_{n+1}\|=1$$
А если взять именно $f_n(x)=x^n$?

 
 
 
 Re: О разложении функций в пространстве L2
Сообщение18.09.2014, 17:54 
Аватара пользователя
vladb314 в сообщении #909144 писал(а):
Если функция ограничена, то любое её значение - конечное число.
Не понял мысли. Берем $f(x)=1/x^2,  \ x\ne 0; \qquad  f(0)=0$.
Укажите точку, в которой значение функции не конечно.

(Del)

 
 
 
 Re: О разложении функций в пространстве L2
Сообщение18.09.2014, 20:58 
Аватара пользователя
vladb314 в сообщении #909144 писал(а):
Как нет? Не понимаю... Если разложение справедливо, то и ряд сходится. Ограниченность нужна для того, что для неограниченных функций это не выполняется. Если функция ограничена, то любое её значение - конечное число. И сумма ряда равна конечному числу. Значит, ряд сходится.

Нет, ну как же. Функция откуда должны быть? И в каком смысле сходится, вы это понимаете? Какая метрика берется?

 
 
 
 Re: О разложении функций в пространстве L2
Сообщение18.09.2014, 21:17 
Аватара пользователя
vladb314 в сообщении #909144 писал(а):
А если взять именно $f_n(x)=x^n$?


Тогда зависит от того, какие берутся $\varphi$.

 
 
 
 Re: О разложении функций в пространстве L2
Сообщение19.09.2014, 08:07 
Аватара пользователя
g______d в сообщении #909282 писал(а):
vladb314 в сообщении #909144 писал(а):
А если взять именно $f_n(x)=x^n$?


Тогда зависит от того, какие берутся $\varphi$.

Спасибо. Но также буду очень признателен, если вы укажете направление, в котором нужно двигаться, чтобы это доказать.

-- Пт сен 19, 2014 13:15:14 --

SpBTimes в сообщении #909267 писал(а):
vladb314 в сообщении #909144 писал(а):
Как нет? Не понимаю... Если разложение справедливо, то и ряд сходится. Ограниченность нужна для того, что для неограниченных функций это не выполняется. Если функция ограничена, то любое её значение - конечное число. И сумма ряда равна конечному числу. Значит, ряд сходится.

Нет, ну как же. Функция откуда должны быть? И в каком смысле сходится, вы это понимаете? Какая метрика берется?

Функции должны быть из $L_2$, как я и указал в первом сообщении. Метрика индуцируется нормой; норма индуцируется скалярным произведением.

-- Пт сен 19, 2014 13:27:36 --

Dan B-Yallay в сообщении #909205 писал(а):
vladb314 в сообщении #909144 писал(а):
Если функция ограничена, то любое её значение - конечное число.
Не понял мысли. Берем $f(x)=1/x^2,  \ x\ne 0; \qquad  f(0)=0$.
Укажите точку, в которой значение функции не конечно.

(Del)


Обратное неверно. Если каждое значение функции - конечное число, то функция не обязательно ограничена. Контрпример - ваш пример. Ограниченность означает, что можно указать границы значений для функции. Вопрос: сходится ли её ряд Фурье? Именно для этой функции вопрос не имеет смысла, так как она не принадлежит $L_2$. Но это не принципиально, так как можно указать подобный пример, принадлежащий $L_2$. Будет ли в этом случае сходиться ряд Фурье? Получается, в метрике $L_2$ будет. Тогда, в самом деле, ограниченность не обязательна? Что-то я маленько плаваю... :-(

 
 
 
 Re: О разложении функций в пространстве L2
Сообщение19.09.2014, 08:43 
Аватара пользователя
vladb314 в сообщении #909368 писал(а):
Спасибо. Но также буду очень признателен, если вы укажете направление, в котором нужно двигаться, чтобы это доказать.


Тогда уточните задачу. На каком отрезке это пространство $L_2$ рассматривается? Можно ли в качестве $\varphi_n$ взять $x^n$? Если нет, то можно ли это как-то исправить?

vladb314 в сообщении #909368 писал(а):
Метрика индуцируется нормой; норма индуцируется скалярным произведением.


Да. И все ряды, которые Вы рассматривали, сходятся именно по этой норме. Поточечная сходимость из этой сходимости, вообще говоря, не следует.

 
 
 
 Re: О разложении функций в пространстве L2
Сообщение19.09.2014, 16:48 
Аватара пользователя
vladb314 в сообщении #909368 писал(а):
Обратное неверно. Если каждое значение функции - конечное число, то функция не обязательно ограничена.
Да. Я какую то несусветную ерунду сморозил.

 
 
 
 Re: О разложении функций в пространстве L2
Сообщение19.09.2014, 19:03 
Аватара пользователя
g______d в сообщении #909375 писал(а):
vladb314 в сообщении #909368 писал(а):
Спасибо. Но также буду очень признателен, если вы укажете направление, в котором нужно двигаться, чтобы это доказать.


Тогда уточните задачу. На каком отрезке это пространство $L_2$ рассматривается? Можно ли в качестве $\varphi_n$ взять $x^n$? Если нет, то можно ли это как-то исправить?



Да, рассматривается пространство $L_2[-1;1]$. В этом пространстве $\varphi_n(x) = x^n$ взять нельзя, но, коль скоро функции $x^n$ линейно независимы, то их можно ортонормировать. Получается система многочленов Лежандра. А для неё при $n > m$
$$(x^m,\varphi_n) = \left(\sum_{i=0}^m {c_i \varphi_i}, \varphi_n\right) = \sum_{i=0}^m {c_i (\varphi_i,\varphi_n)} = 0.$$

Поэтому
$$\lim_{n\to\infty} \sum_{i=n+1}^\infty (x^n,\varphi_i)\varphi_i(x) = 0.$$

Ну хорошо, мы понимаем, что перестановка базиса есть снова базис, и мы строим базис $\{\psi_i\}$ следующим образом:
$$\{\psi_0,\psi_1,\psi_2,\psi_3,\psi_4\,...\} = \{\varphi_1,\varphi_0,\varphi_3,\varphi_2,\varphi_5\,...\}$$
В этом случае
$$\sum_{i=n+1}^\infty (x^n, \psi_i)\psi_i(x) = \sum_{i=n+1\atop i - \text{чёт}}^\infty (x^n, \psi_i)\psi_i(x) + \sum_{i=n+1\atop i - \text{неч}}^\infty (x^n, \psi_i)\psi_i(x) = $$
$$= \sum_{i=n+1\atop i - \text{чёт}}^\infty (x^n, \varphi_{i+1})\varphi_{i+1}(x) + \sum_{i=n+1\atop i - \text{неч}}^\infty (x^n, \varphi_{i-1})\varphi_{i-1}(x) = \sum_{i=n+1\atop i - \text{неч}}^\infty (x^n, \varphi_{i-1})\varphi_{i-1}(x).$$

Теперь при чётном $n$ получаем:
$$\sum_{i=n+1\atop i - \text{неч}}^\infty (x^n, \varphi_{i-1})\varphi_{i-1}(x) = c_n \varphi_n(x);$$
$$\lim_{n\to\infty\atop n - \text{чёт}} \left\| \sum_{i=n+1}^\infty (x^n, \psi_i)\psi_i(x) \right\| = \lim_{n\to\infty\atop n - \text{чёт}} {\| c_n \varphi_n(x) \|} = \lim_{n\to\infty\atop n - \text{чёт}} |c_n| = +\infty$$

При нечётном $n$:
$$\sum_{i=n+1\atop i - \text{неч}}^\infty (x^n, \varphi_{i-1})\varphi_{i-1}(x) = \sum_{i=n+2\atop i - \text{неч}}^\infty (x^n, \varphi_{i-1})\varphi_{i-1}(x) = 0;$$
$$\lim_{n\to\infty\atop n - \text{неч}} \left\| \sum_{i=n+1}^\infty (x^n, \psi_i)\psi_i(x) \right\| = 0.$$

Получаем, что последовательность $\left\| \sum_{i=n+1}^\infty (x^n, \psi_i)\psi_i(x) \right\|$ имеет две разных предельных точки, и предела не имеет.

Всё верно?

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group