2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Предельный цикл.
Сообщение24.08.2014, 18:28 
Аватара пользователя
Условие:
1) Найдите предельный цикл системы уравнений:
$
\begin{cases}
\dot{x} = -y + x^3(4 - x^2 - y^2)\\
\dot{y} = x + y^3(4 - x^2 - y^2)
\end{cases}
$
на вещественной плоскости и определите его устойчивость.
2) Покажите, что у этой системы только один цикл.

Я попробовал перейти к полярным координатам, получилось:
$
\begin{cases}
\dot{r}\cos{\varphi} - r\dot{\varphi}\sin{\varphi} = -r\sin{\varphi} + r^3\cos^3{\varphi}(4 - r^2)\\
\dot{r}\sin{\varphi} + r\dot{\varphi}\cos{\varphi} = r\cos{\varphi} + r^3\sin^3{\varphi}(4 - r^2)
\end{cases}
$

Если здесь взять $&\dot{\varphi} = 1&$, то, сложив оба равенства:
$\dot{r} = r^3(4 - r^2)(1 -\cos{\varphi}\sin{\varphi})$
При $r = 2$ получается замкнутая траектория, при чём если $r > 2$, то $$\dot{r} < 0$, а если $r < 2$, то $$\dot{r} > 0$. Вроде бы получается устойчивый предельный цикл.

Построил в вольфраме, даже, кажется, похоже на правду получилось:
Изображение

Но тем не менее не уверен в достаточности обоснования, да и доказать единственность не понимаю как. Пробовал читать Филиппова и Понтрягина, но просветления не принесло.
Заранее спасибо за любые советы.

 
 
 
 Re: Предельный цикл.
Сообщение24.08.2014, 18:54 
Аватара пользователя
Докажите, что любая окружность с центром в нуле, кроме $r=2$, является дугой без контакта для поля. Для этого возьмите значение формы $dr^2$ на вашем поле. А раз контакта нет, то и цикла нет, иначе бы цикл хоть раз, да коснулся бы окружности. То есть, Вам надо найти знак выражения $xP(x,y)+yQ(x,y)$, где обозначения такие, что исходная система записывается как $\dot x = P(x,y),\;\dot y = Q(x,y)$. Из того, как ведёт себя этот знак по обе стороны окружности $r = 2$ и делаются выводы об отсутствии других предельных циклов.

Если не знаете, что такое формы и поля, то, просто говоря, требуется найти, входят ли тракетории внутрь окружности или выходят наружу. Для этого можно посмотреть на знак скалярного произведения вектора поля и вектора $\mathbf{r} = (x,y)^T$. Получится то же самое выражение.

Можно почитать очень полезную для приложений книжку Баутин, Леонтович. "Методы и приёмы качественного исследования динамических систем на плоскости". Или старенькую Андронов, Леонтович, Гордон, Майер. "Качественная теория динамичских систем второго порядка".

-- Вс авг 24, 2014 18:14:32 --

Oleg Zubelevich в сообщении #899342 писал(а):
я не помню как называется эта теорема

Критерий Бендиксона.

 
 
 
 Re: Предельный цикл.
Сообщение24.08.2014, 19:16 
затер свое сообщение потому, что счел Ваше более подходящим

 
 
 
 Re: Предельный цикл.
Сообщение24.08.2014, 19:17 
Аватара пользователя
А зря затёрли. Восстановите, пожалуйста. Оно красиво и может быть полезно в других случаях.

Но там важна односвязность. Можно, конечно, внешнюю область рассмотреть, заклеив плоскость одной бесконечно удалённой точкой, и перейдя в соответствующую карту. И там опять воспользоваться критерием Бендиксона.

 
 
 
 Re: Предельный цикл.
Сообщение24.08.2014, 19:20 
если совсем настаивать на совершенной строгости, надо доказать формально устойчивость предельного цикла по Ляпунову и орбитальную. хотя, Ваши рассуждения убедительны
что касается других предельных циклов, я не помню как называется эта теорема, но рассуждение такое.
предположим у нас есть периодичечкая траектория $L$, значит векторное поле $v$ системы касается этой траектории следовательно
$0=\int_Lv_1dx_2-v_2dx_1=\int_D\mathrm{div}\,v\, dx_1\wedge dx_2,\quad \partial D=L$
Поэтому, если дивегенция векторного поля в области знакопостоянная , то в этой области периодических траекторий быть не может. попробуйте рассуждая в таком духе доказать, что нет других предельных циклов в вашей задаче

-- Вс авг 24, 2014 19:27:02 --

olenellus в сообщении #899349 писал(а):
Но там важна односвязность

а по-моему для внешности этого предельного цикла рассуждение тоже проходит. Т.е. если во вне предельного цикла дивиргенция знакопостоянна (не считал), то переиодических траекторий в области $r>2$ нет

-- Вс авг 24, 2014 19:29:38 --

вообщем если область не односвязна, то границы должны быть инвариантными кривыми, как-то так

 
 
 
 Re: Предельный цикл.
Сообщение24.08.2014, 20:24 
Аватара пользователя
Действительно, $xP(x,y) + yQ(x,y) = (4 - x^2 - y^2)(x^4 + y^4)$ равно нулю только на полученной окружности, вне её отрицательно, а внутри - положительно.
Отдельное спасибо за книги, как раз то, что я пытался найти. :)

Дивергенция $-5x^4 - 5y^4 - 6x^2y^2 + 12 x^2 + 12y^2$, вне окружности положительна.
Но внутри окружности она всё же меняет знак и, насколько я понимаю, такие рассуждения уже нельзя применять? Хотя наверное можно проинтегрировать внутри, но вариант со скалярным произведением всё же кажется как минимум более наглядным.

 
 
 
 Re: Предельный цикл.
Сообщение24.08.2014, 23:30 
Аватара пользователя
Дивергенция, наверно, отрицательна, а не положитаельно, но это неважно. Ну, критерий даёт только достаточное условие. В данном случае он не работает, но имейте его в виду на будущее. Ничего страшного. Главное, что удалось хоть как-то доказать. В большинстве реальных, а не учебных, проблем, даже с очень простенькой на вид системой уравнений, это большая роскошь. Я уже не пишу о явном нахождении предельного цикла.

 
 
 
 Re: Предельный цикл.
Сообщение25.08.2014, 13:11 
Аватара пользователя
Rattleflap в сообщении #899313 писал(а):
Я попробовал перейти к полярным координатам, получилось:
$\begin{cases}\dot{r}\cos{\varphi} - r\dot{\varphi}\sin{\varphi} = -r\sin{\varphi} + r^3\cos^3{\varphi}(4 - r^2)\\ \dot{r}\sin{\varphi} + r\dot{\varphi}\cos{\varphi} = r\cos{\varphi} + r^3\sin^3{\varphi}(4 - r^2)\end{cases}$
Если первое уравнение умножить на $\cos\varphi$, второе — на $\sin\varphi$, и сложить, то всё сразу становится ясным.

 
 
 
 Re: Предельный цикл.
Сообщение25.08.2014, 18:37 
Someone в сообщении #899680 писал(а):
Если первое уравнение умножить на $\cos\varphi$, второе — на $\sin\varphi$, и сложить, то всё сразу становится ясным.

Или просто в исходной системе умножить первое на икс и второе на игрек.

 
 
 
 Re: Предельный цикл.
Сообщение25.08.2014, 18:41 
ewert в сообщении #899860 писал(а):
Или просто в исходной системе умножить первое на икс и второе на игрек.

Rattleflap в сообщении #899436 писал(а):
Действительно, $xP(x,y) + yQ(x,y) = (4 - x^2 - y^2)(x^4 + y^4)$

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group