2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Доказать вполне непрерывность оператора
Сообщение09.08.2014, 20:58 
Рассмотрим пространство Гильберта $\ell^\infty$ ограниченных последовательностей $x = \{\xi_n\}_{n=1}^\infty$:
$$||x|| = \sup_{n \in \mathbb N} |\xi_n|.$$
Пусть матрица $||a_{i j}||_1^\infty$ порождает оператор $A$ в пространстве $\ell^\infty$, преобразующий вектор $x = (\xi_1, \xi_2, \dots)$ в вектор $y = Ax = (\eta_1, \eta_2, \dots)$, где
$$\eta_i = \sum_{j = 1}^\infty a_{i j} \xi_j.$$
Как показать вполне непрерывность оператора $A$, если его матрица неотрицательна и имеет конечные построчные суммы:
$$a_{i \star} = \sum_{j = 1}^\infty a_{i j} < \infty \, ?$$
Если необходимо, можно предполагать, что последовательность $\{a_{i \star}\}_{i=1}^\infty$ построчных сумм ограничена.

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 21:29 
wormer в сообщении #894735 писал(а):
матрица неотрицательна и имеет конечные построчные суммы:
$$a_{i \star} = \sum_{j = 1}^\infty a_{i j} < \infty \, ?$$

похоже модуля не хватает
навскидку: предел сходящейся по операторной норме последовательности компактных операторов есть компактный оператор

-- Сб авг 09, 2014 21:37:56 --

wormer в сообщении #894735 писал(а):
Рассмотрим пространство Гильберта $\ell^\infty$

это не гильбертово пространство

-- Сб авг 09, 2014 21:38:24 --

wormer в сообщении #894735 писал(а):
Если необходимо, можно предполагать, что последовательность $\{a_{i \star}\}_{i=1}^\infty$ построчных сумм ограничена.

придется предполагать

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 21:38 
Аватара пользователя
wormer в сообщении #894735 писал(а):
Как показать вполне непрерывность оператора $A$, если его матрица неотрицательна и имеет конечные построчные суммы:
$$
a_{i \star} = \sum_{j = 1}^\infty a_{i j} < \infty \, ?
$$


А не никак ли? Например, тождественный оператор такому условию удовлетворяет.

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 21:57 
Oleg Zubelevich,
У нас матрица оператора неотрицательная, поэтому модули не нужны. Спасибо за замечание по поводу Гильбертова пространства.

Как предел компактных операторов? Если мы рассмотрим последовательность операторов $A_1, A_2, \dots$, задаваемых главной квадратной подматрицой матрицы $A$: $A_k = ||a^{(k)}_{i j}||$, $a^{(k)}_{i j} = a_{i j}$, если $\max \{i, j\} \leqslant k$, $a^{(k)}_{i j} = 0$ в противном случае.

g______d,
Верное замечание. Предположим, что матрица $A$ неприводима, или, что то же самое, некоторая степень $A$ строго положительна.

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 21:59 
wormer в сообщении #894752 писал(а):
Предположим, что матрица $A$ неприводима, или, что то же самое, некоторая степень $A$ строго положительна.

единичная матрица подойдет?

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 22:00 
Аватара пользователя
wormer в сообщении #894735 писал(а):
Если необходимо, можно предполагать, что последовательность $\{a_{i \star}\}_{i=1}^\infty$ построчных сумм ограничена.


Предположите, что она стремится к $0$

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 22:02 
Oleg Zubelevich в сообщении #894753 писал(а):
wormer в сообщении #894752 писал(а):
Предположим, что матрица $A$ неприводима, или, что то же самое, некоторая степень $A$ строго положительна.

единичная матрица подойдет?

Нет, никакая степень единичной матрицы не будет положительной (всегда будут нулевые элементы).

Прошу прощения, не дописал вопрос: если мы рассмотрим последовательность таких операторов $A_1, A_2, \dots$, то будет ли она сходится по операторной норме к $A$. И вообще, какая в нашем случае операторная норма будет согласована с определением нормы векторной?.. хммм...

-- 09.08.2014, 22:05 --

Red_Herring в сообщении #894755 писал(а):
wormer в сообщении #894735 писал(а):
Если необходимо, можно предполагать, что последовательность $\{a_{i \star}\}_{i=1}^\infty$ построчных сумм ограничена.


Предположите, что она стремится к $0$

Увы, не могу :( потому что не стремиться... А в этом случае оператор $A$ будет вполне непрерывным?

Могу сказать, что в каждой строке матрицы лишь конечное число элементов отлично от нуля. Еще могу сказать, что множество построчных сумм конечно. И вообще множество значений элементов матрицы $A$ - конечное множество. Но лучше бы без этих предположений, если это возможно. По мне так это не должно быть существенно для доказательства.

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 22:07 
wormer в сообщении #894756 писал(а):
ния, не дописал вопрос: если мы рассмотрим последовательность таких операторов $A_1, A_2, \dots$, то будет ли она сходится по операторной норме к $A$. И вообще, какая в нашем случае операторная норма будет согласована с определением нормы векторной?.. хммм...


этим не надо заморачиваться проверяйте так: $\sup_{\|x\|\le 1}\|A_nx-Ax\|\to 0$ при этом условии:
Red_Herring в сообщении #894755 писал(а):
wormer в сообщении #894735 писал(а):
Если необходимо, можно предполагать, что последовательность $\{a_{i \star}\}_{i=1}^\infty$ построчных сумм ограничена.


Предположите, что она стремится к $0$


-- Сб авг 09, 2014 22:08:34 --

$A_n$ -- конечномерные апроксимации

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 22:08 
Oleg Zubelevich в сообщении #894758 писал(а):
wormer в сообщении #894756 писал(а):
ния, не дописал вопрос: если мы рассмотрим последовательность таких операторов $A_1, A_2, \dots$, то будет ли она сходится по операторной норме к $A$. И вообще, какая в нашем случае операторная норма будет согласована с определением нормы векторной?.. хммм...


этим не надо заморачиваться проверяйте так: $\sup_{\|x\|\le 1}\|A_nx-Ax\|\to 0$ при этом условии:
Red_Herring в сообщении #894755 писал(а):
wormer в сообщении #894735 писал(а):
Если необходимо, можно предполагать, что последовательность $\{a_{i \star}\}_{i=1}^\infty$ построчных сумм ограничена.


Предположите, что она стремится к $0$

Сейчас попробую осуществить, но все-таки у меня построчные суммы к нулю не стремятся.

Добавлено:
Осознал $\sup_{\|x\|\le 1}\|A_nx-Ax\|\to 0$. Действительно так. Но условие $\lim_{i \to \infty} a_{i \star} = 0$ существенно.

Добавлено2:
Дело в том, что если предположить $\lim_{i \to \infty} a_{i \star} = 0$, то мы получим достаточные условия Гильберта вполне непрерывности оператора:
$$\sum_{i = 1}^\infty \sum_{j = 1}^\infty |a_{i j}|^2 < \infty.$$
Как известно, эти условия являются достаточными, но не являются необходимыми, поэтому оператор лишь с ограниченными построчными суммами тем не менее может оказаться вполне непрерывным.

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 22:42 
 i  wormer
Пожалуйста, используйте двойные доллары вместо квадратных скобок для оформления выключной формулы, иначе формула некорректно отображается при цитировании. И пользуйтесь кнопкой "Вставка", избегайте избыточного цитирования.

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 22:46 
Аватара пользователя
wormer в сообщении #894756 писал(а):
Нет, никакая степень единичной матрицы не будет положительной (всегда будут нулевые элементы).


Что за нулевые элементы? Матричные элементы? Тогда можно, например, взять $a_{ij}=\delta_{ij}+e^{-i^2-j^2}$

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 23:12 
Lia, спасибо. Учту в дальнейшем.

g______d в сообщении #894770 писал(а):
wormer в сообщении #894756 писал(а):
Нет, никакая степень единичной матрицы не будет положительной (всегда будут нулевые элементы).


Что за нулевые элементы? Матричные элементы? Тогда можно, например, взять $a_{ij}=\delta_{ij}+e^{-i^2-j^2}$

В этом случае оператор не будет вполне непрерывным?

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 23:25 
Аватара пользователя
wormer в сообщении #894781 писал(а):
В этом случае оператор не будет вполне непрерывным?


Нет, потому что это единичный+кратный проектору на одномерное подпространство.

 
 
 
 Re: Доказать вполне непрерывность оператора
Сообщение09.08.2014, 23:35 
g______d в сообщении #894787 писал(а):
wormer в сообщении #894781 писал(а):
В этом случае оператор не будет вполне непрерывным?


Нет, потому что это единичный+кратный проектору на одномерное подпространство.

С кратными проекторами у меня туго, но можно верить. Что же делать... Скажите, а если бы мы вместо $\ell^\infty$ взяли пространство $\ell^1$ или $\ell^2$, то этого было бы достаточно для вполне непрерывности $A$? На вскидку да, ибо в этом случае вроде как $\sup_{||x|| \leqslant 1} || A_n x - A x|| \to 0$ независимо от того, стремится $\{ a_{i \star} \}$ к нулю или нет (лишь бы была ограничена), верно же?

 
 
 [ Сообщений: 14 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group