2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5 ... 8  След.
 
 Re: Скорость и инерция.
Сообщение13.05.2014, 00:49 
Заслуженный участник


29/11/11
4390
С.Мальцев в сообщении #862471 писал(а):
Поясните, пожалуйста. Если речь идет о наблюдении различных часов одним наблюдателем и о наблюдении одних часов различными наблюдателями, то да, в одном случае ход часов будет выглядеть в $\gamma$ раз ускоренным, в другом случае – в $\gamma$ раз замедленным. Тогда что Вы подразумеваете под этим – “третий (экземпляр часов) не изменяет хода”.


имеем трое часов, двигающихся со скоростями 0, 50 с копейками и 100, три процесса в разном темпе. при переходе в исо двигающуюся со скоростью 100 от предыдущей первый процесс замедляется, второй не меняет темпа, третий ускоряется

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение14.05.2014, 21:47 


19/05/08

583
Riga
rustot в сообщении #862477 писал(а):
имеем трое часов, двигающихся со скоростями 0, 50 с копейками и 100, три процесса в разном темпе. при переходе в исо двигающуюся со скоростью 100 от предыдущей первый процесс замедляется, второй не меняет темпа, третий ускоряется
А, вон Вы о чем, понятно. Да, именно так, и тем не менее...

rustot в сообщении #862051 писал(а):
С.Мальцев в сообщении #862006 писал(а):
Если рассматривать ситуацию с позиции Лоренца-Пуанкаре
с чьей позиции ни рассматривай
В том-то и дело, что существуют принципиальные различия в позициях Эйнштейна-Минковского и Лоренца-Пуанкаре.
Если с позиций Э-М все эти наблюдаемые изменения при переходах из одной ИСО в другую обусловлены только геометрическими свойствами пространства-времени (что-то вроде оптических иллюзий и обмана зрения), то с позиций Л-П изменения реальны и физичны. Время в движущейся ИСО действительно замедляется, атомы (а, соответственно, и линейки) действительно сокращаются, часы идут асинхронно, и именно эти явления как раз и обеспечивают с одной стороны неизменность наблюдаемой скорости света, с другой стороны, благодаря этим явлениям и обеспечивается сохранение принципа относительности.
Однако для сохранение принципа относительности явно недостаточно только замедления времени, сокращения атомов и рассинхронизации часов. Должны еще и действительно изменяться не только такие физические свойства веществ, как, скажем, плотность и твердость, вязкость и эластичность, текучесть и теплопроводность, но и изменяться законы классической физики, например, в оптике – угол падения в общем случае не равен углу отражения, и т.д.

Как видим, позиции Эйнштейна-Минковского и Лоренца-Пуанкаре различаются кардинально.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение15.05.2014, 08:47 
Заслуженный участник


29/11/11
4390
С.Мальцев в сообщении #863351 писал(а):
Время в движущейся ИСО действительно замедляется, атомы (а, соответственно, и линейки) действительно сокращаются, часы идут асинхронно, и именно эти явления как раз и обеспечивают с одной стороны неизменность наблюдаемой скорости света, с другой стороны, благодаря этим явлениям и обеспечивается сохранение принципа относительности.
Однако для сохранение принципа относительности явно недостаточно только замедления времени, сокращения атомов и рассинхронизации часов. Должны еще и действительно изменяться не только такие физические свойства веществ, как, скажем, плотность и твердость, вязкость и эластичность, текучесть и теплопроводность, но и изменяться законы классической физики, например, в оптике – угол падения в общем случае не равен углу отражения, и т.д.


такая система сооружается без проблем. просто берется произвольная исо и ее инструменты назначаются единственно правильными, "настоящими". а показания любых других инструментов - неверными в силу физических изменений, происходящих с ними при движении относительно этого абсолюта. но такая система будет выглядеть явно притянутой за уши, искуственно усложненной, а выбор абсолюта ничем не обоснованным и недоказуемым.

можно ведь переписать законы движения небесных тел как функцию их местоположения относительно звезды московского кремля и доказать что она неверна будет невозможно, потому-что она будет верна. но явно искуственно усложнена и притянута за уши.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение15.05.2014, 11:05 
Заслуженный участник
Аватара пользователя


28/09/06
10851
С.Мальцев в сообщении #863351 писал(а):
Если с позиций Э-М все эти наблюдаемые изменения при переходах из одной ИСО в другую обусловлены только геометрическими свойствами пространства-времени (что-то вроде оптических иллюзий и обмана зрения), то с позиций Л-П изменения реальны и физичны.

Все эти слова про «реальность» или «иллюзорность» наблюдаемых изменений не несут никакого смысла. Лоренц верил в существование выделенной СО, однако в итоге так и не смог предложить способа её обнаружить. Так что науке с помощью Эйнштейна пришлось научиться обходиться без выделенной СО.

С.Мальцев в сообщении #863351 писал(а):
именно эти явления как раз и обеспечивают с одной стороны неизменность наблюдаемой скорости света, с другой стороны, благодаря этим явлениям и обеспечивается сохранение принципа относительности.

Вы можете верить к какие угодно «корневые причины» неизменности скорости света, ибо это непроверяемо. Но факт заключается в том, что только постулат о неизменности скорости света позволяет нам на практике синхронизировать удалённые часы, т.е. ввести то понятие одновременности, с которым работает теория относительности.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение15.05.2014, 12:33 
Аватара пользователя


18/06/13

505
Подмосковье
С.Мальцев в сообщении #863351 писал(а):
с позиций Л-П изменения реальны и физичны.

Не наговаривайте на Лоренца и Пуанкаре напраслину. Если Лоренц, действительно, какое-то время безуспешно разрабатывал гипотезу сокращения межатомных расстояний у движущегося тела, то Пуанкаре никогда подобными вещами не занимался. Он ещё до разработки теории относительности чётко формулировал: не природа даёт нам пространство и время, а мы даём их природе, потому что находим это удобным.
Первооткрыватели были вправе предполагат и ошибаться. Сейчас СТО законченная и исчерпывающе провернная на практике теория. На беспокоящие Вас вопросы в Физической энциклопедии, т. 2, С. 608 дан окончательный ответ:
Цитата:
Они (промежутки времени и отрезки длины) относительны примерно в том же смысле, каком относительными являются суждения наблюдателей об угл. расстоянии, под к-рыми они видят одну и ту же пару предметов.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение25.05.2014, 21:50 


19/05/08

583
Riga
rustot в сообщении #863426 писал(а):
такая система сооружается без проблем. просто берется произвольная исо и ее инструменты назначаются единственно правильными, "настоящими". а показания любых других инструментов - неверными в силу физических изменений, происходящих с ними при движении относительно этого абсолюта. но такая система будет выглядеть явно притянутой за уши, искуственно усложненной, а выбор абсолюта ничем не обоснованным и недоказуемым.
Так-то оно так, вроде бы...
Тем не менее, попробуем рассмотреть эксперимент с ускорениями. Представим себе что-то вроде эйнштейнова лифта, только для наглядности (поскольку направление скорости и ускорения не совпадают) будем не тянуть его за трос с ускорением, а толкать. Например, ставим его на рельсы (превратив лифт в вагон), а самим рельсам с помощью, скажем, домкратов, придаем небольшое постоянное ускорение. Рельсы располагаем по оси $y$, а ускорение $a$ неподвижному относительно рельс вагону обеспечиваем в направлении положительных значений оси $x$.

Теперь придадим вагону скорость по оси $y$. В таком случае, для того чтобы приборы в вагоне зафиксировали такое же ускорение $a$, как и в неподвижном относительно рельс вагоне, ускорение рельс по оси $x$ необходимо уменьшить с коэффициентом $k^2$.

Далее вся система (домкраты, рельсы и вагон) движется по оси $x$ со скоростью $v$ (оси $x$ и $x'$ совпадают). Теперь придаем рельсам с неподвижным относительно рельс вагоном такое же ускорение $a$ с точки зрения сопутствующих наблюдателей ИСО', но уменьшеным с коэффициентом $k_v^3$ с точки зрения наблюдателей покоящейся ИСО, т.к. теперь скорость и ускорение сонаправлены. Приборы в вагоне должны зафиксировать первоначальное ускорение $a$.

И снова повторяем эксперимент с движением вагона по оси $y'$ с той же скоростью $w$, как и в первом случае. Следуя принципу относительности, надо полагать, что и в данном случае ускорение рельс по оси $x'$ необходимо уменьшить с коэффициентом $k_w^2$. Т.е. с точки зрения наблюдателей покоящейся ИСО, ускорение вагона должно уменьшиться с коэффициентом $k_v^3 k_w^2$.

Будут ли в таком случае показания приборов в вагоне соответствовать первоначальным их показаниям в покоящейся ИСО?

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение26.05.2014, 00:33 


19/05/08

583
Riga
С.Мальцев в сообщении #867766 писал(а):
Будут ли в таком случае показания приборов в вагоне соответствовать первоначальным их показаниям в покоящейся ИСО?
Казалось бы, странный вопрос.
Но, промоделировав такой эксперимент графически, уже получаем информацию к размышлению. Для упрощения возьмем заданные скорости равными, скажем, $v=w=0{,}8$ ($c=1$) и получаем два рисунка – слева для покоящейся ИСО, справа для движущейся со скоростью $v$ ИСО'. На правом рисунке отображено движение вагона в ИСО' с точки зрения наблюдателей покоящейся ИСО со скоростью $u=0,9330$ и под углом $\gamma$ к оси $x$ со значениями $\sin\gamma=0{,}5145, \cos\gamma=0{,}8575$:

Изображение


Сразу же обнаруживаются различия в направлении ускорения относительно «вертикали» вагона. Если в первом случае такое ускорение соответствует «вертикали» вагона, то во втором случае направление ускорения заметно отклонено. Расчеты предоставлю чуть позднее.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение26.05.2014, 17:58 


19/05/08

583
Riga
Обратим внимание также на сокращение линеек в первом и во втором случае в движущемся вагоне (в направлении ускорения). Если, как видно из левого рисунка, в первом случае линейки в направлении ускорения не сокращаются, то во втором случае линейка в вагоне в направлении ускорения сокращена несколько больше, чем такая же линейка, покоящаяся относительно ИСО'. Поскольку ускорение можно вычислить с помощью линеек и часов, то при сокращенных линейках и прочих равных условиях, ускорение должно быть зафиксировано несколько большим.

Попробуем рассчитать, какое ускорение зафиксируют приборы, если действовать в соответствии с принципом относительности. Пусть в первом случае (в покоящейся ИСО) приборы в вагоне фиксировали ускорение, скажем, 10 м/сек². Тогда, в соответствии с принципом относительности, ускорение в движущейся ИСО' с точки зрения наблюдателей покоящейся ИСО, при $v=w=0{,}8$ и $k_v=k_w^2= 0{,}6$ должно составить, $a=a'k_v^3 k_w^2= 0{,}78$ м/сек².

Если же произвести расчет сгласно приведенной в стартовом посте формуле:
$$
a=a'\sqrt{ \frac{\left(1-\frac{u^2}{c^2}\right)^3}{1-\frac{(u\sin\gamma)^2}{c^2}}} 
$$
(при $u=0,9330,\sin\gamma=0{,}5145$)

то для того, чтобы приборы в вагоне зафиксировали первоначальное ускорение 10 м/сек², в этом направлении необходимо придать ускорение $a=0{,}53$ м/сек² с точки зрения наблюдателей покоящейся ИСО.

Теперь, найдя соотношение необходимого и расчетного ускорения (0,68), получаем значение ускорения, которое должны зафиксировать приборы движущегося вагона в ИСО' $ a'= 14{,}62$ м/сек² при $a=0{,}78$ м/сек² с точки зрения наблюдателей покоящейся ИСО.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение27.05.2014, 07:43 


19/05/08

583
Riga

(Оффтоп)

Странное ощущение – третий день как будто сам с собой общаюсь. Ни ответа, ни привета...
Может быть предложенная задача несколько сложновата для восприятия?


Упростим задачу. Берем длинную ракету, с помощью маршевого двигателя ускоряем ее по оси $x$ до некоторой скорости $v$ и отключаем двигатель. Теперь с помощью вспомогательных двигателей одновременно (с точки зрения сопутствующих наблюдателей) начинаем ускорять ракету по оси $y'$. С точки зрения наблюдателей покоящейся ИСО (в силу рассинхронизации часов в ИСО' по оси $x'$) сначала двинется корма, затем нос ракеты. По мере увеличения скорости $w$ по оси $y'$, угол отклонения ракеты относительно оси $x$ должен увеличиваться всё больше и больше с точки зрения наблюдателей покоящейся ИСО, иначе с точки зрения наблюдателей ИСО' расположение ракеты (опять же – в силу рассинхронизации часов в ИСО') перестанет быть строго параллельным оси $x'$. Затем отключаем вспомогательные двигатели и ракета в таком «наклонном» положении продолжает движение по оси $y'$.

Если теперь повторно включить маршевый двигатель, то в каком направлении должна начать ускоряться ракета?

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение27.05.2014, 12:35 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)

С.Мальцев в сообщении #868287 писал(а):
Странное ощущение – третий день как будто сам с собой общаюсь. Ни ответа, ни привета...

На вас все махнули рукой.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение27.05.2014, 20:40 


19/05/08

583
Riga
Munin в сообщении #868328 писал(а):
На вас все махнули рукой.
Возможно, возможно...

Хотя, у меня бы, пожалуй, всё же возникли бы некоторые вопросы. Скажем, если у ракеты сначала двинется корма, а затем всё остальное, то сможет ли такая ракета ускоряться строго по оси $y'$ в ИСО' или принцип относительности нарушится сразу же из-за изменения направления вектора тяги, как только мы попытаемся таким образом ускорять ракету перпендикулярно направлению движения ИСО'?

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение28.05.2014, 20:37 


19/05/08

583
Riga
Пардон, приведенная несколькими постами выше формула, конечно же, при $c=1$ должна выглядеть несколько иначе:
$$
a=a'\sqrt{ \frac{(1-u^2)^3}{1-(u\sin\gamma)^2}} 
$$
epros в сообщении #863452 писал(а):
Все эти слова про «реальность» или «иллюзорность» наблюдаемых изменений не несут никакого смысла. Лоренц верил в существование выделенной СО, однако в итоге так и не смог предложить способа её обнаружить.
Может быть, у Лоренца тогда всего лишь не было компьютера?

epros в сообщении #863452 писал(а):
Так что науке с помощью Эйнштейна пришлось научиться обходиться без выделенной СО.
А как Вам такой вариант – наука, возможно, больше потеряла чем приобрела, научившись обходиться без идей Лоренца и Пуанкаре? Разумеется, идей о сути релятивистской физики.

npduel в сообщении #863470 писал(а):
Сейчас СТО законченная и исчерпывающе провернная на практике теория. На беспокоящие Вас вопросы в Физической энциклопедии, т. 2, С. 608 дан окончательный ответ
Окончательный ответ был дан задолго до Физической энциклопедии:
Цитата:
Все, что могло быть изобретено, уже изобрели.
(Charles Н. Duell - специальный уполномоченный американского Бюро Патентов, 1899 г.)

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение02.06.2014, 12:49 


19/05/08

583
Riga
Рассмотрим подробнее частный случай движения единичного отрезка A''B'' ИСО'' со скоростью $w$ относительно ИСО' по оси $y'$ (оси $y'$ и $y''$ совпадают) при движении единичного отрезка A'B' (ИСО') со скоростью $v$ по оси $x$ (оси $x$ и $x'$ совпадают) относительно покоящейся ИСО. Отрезки A'B' и A''B'' расположены на осях $x'$ и $x''$ соответственно. Оси $x'$ и $x''$ с точки зрения наблюдателей ИСО расположены относительно друг друга под углом $\varphi$ (см. ниже правый рисунок), хотя, с точки зрения наблюдателей ИСО' и ИСО'' оси $x'$ и $x''$ в нулевой «момент» времени совпадают. Расчеты показывают, что ИСО' и ИСО'' при таком движении остаются связанными преобразованиями Лоренца. Так что, при инерционном движении принцип относительности, несомненно, сохраняется.

На левом рисунке отображено положение единичных отрезков в нулевой момент времени ИСО и в точках B' и B'' при их совпадении. На правом рисунке отображено положение тех же отрезков нулевой момент в точках A' и A'' при их совпадении:

Изображение


Рассинхронизация часов между точками A' и B' (при $c=1$) составляет $\Delta t'=-x'v$, но поскольку в данном случае $x'=1$ часы в точке A' опережают часы в точке B' на величину $\Delta t'=v$. Поскольку часы в ИСО' с точки зрения наблюдателей ИСО идут замедлено с коэффициентом $k=\sqrt{1-v^2}$, между совпадениями концов отрезков в ИСО должно пройти:
$$t=\frac v{\sqrt{1-v^2}}$$
Поскольку линейки по оси $y'$ в ИСО' с точки зрения наблюдателей ИСО не сокращены, а часы в ИСО' идут замедлено с коэффициентом $k$, скорость $w$ в ИСО' должна тоже упасть с коэффициентом $k$, т.е. $w_0= w\sqrt{1-v^2}$. Таким образом, за время $t$, точка A'' пройдет (с точки зрения наблюдателей ИСО) по оси $y'$ расстояние:
$$y=w_0t=\frac{vw\sqrt{1-v^2}}{\sqrt{1-v^2}}=vw$$
Учитывая, что единичный отрезок A'B' сокращен с коэффициентом $k$, получаем формулу длины отрезка A''B'' с точки зрения наблюдателей ИСО:
$$l_0'' =\sqrt{1-v^2+(vw)^2}=\sqrt{1-v^2(1-w^2)}$$
Откуда далее находим значение угла $\varphi$, т.е. угла отклонения оси $x''$ относительно осей $x$ и $x'$ с точки зрения наблюдателей ИСО:
$$\sin\varphi =\sqrt{\frac{(vw)^2}{1-v^2(1-w^2)}}$$
$$\cos\varphi =\sqrt{\frac{1-v^2}{1-v^2(1-w^2)}}$$
Теперь, с помощью одной из формул ПЛ (слегка подредактированной под данную задачу) находим точку A' ($y'=0, t'=v$) в ИСО'':
$$
y''=\frac{y'-wt'}{\sqrt{1-w^2}}= \frac{-vw}{\sqrt{1-w^2}}
$$
Поскольку с точки зрения наблюдателей ИСО'' оси $x''$ и $y''$ ортогональны, а длина отрезка A''B'' равна единице, получаем угол $\varphi''$, т.е. угол, под которым отвес отклонится от вертикали в ИСО'' при ускорении в направлении оси $y'$:
$$ \cos\varphi'' =\frac 1{\sqrt{1+\frac{(vw)^2}{1-w^2}}}$$

Эти расчеты вполне можно проверить с помощью формул, выведенных для общего случая движения двух ИСО относительно третьей. Но об этом в следующий раз.

И что занимательно, при ускорении по оси $x'$, отвес (с точки зрения наблюдателей ИСО'') должен отклониться на угол $\varphi''$, а вот если отпустить шарик, то он тоже должен упасть под углом $\varphi''$, но остаться лежать на полу вагона. А если вагон ускорять по оси $x''$, то шарик должен упасть «вертикально» вниз и тут же покатиться по горизонтальному полу в направлении положительных значений оси $y''$.


P.S. На рисунках отображено движение при $v=0{,}8, w=0{,}5$
$t=1{,}(3)$
$ l_0''=0{,}72$
$\varphi=33{,}69^{\circ}$
$\varphi''=24{,}79^{\circ}$

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение02.06.2014, 20:58 


19/05/08

583
Riga
Пожалуй, прежде чем перейти к дальнейшему разбору полетов, стоит вывести общую формулу сокращения отрезков в движущейся со скоростью $v$ ИСО' с точки зрения наблюдателей покоящейся ИСО. С помощью формул $x'=\cos\alpha', y'=\sin\alpha'$ строим единичную окружность в ИСО'. Теперь, перейдя в покоящуюся ИСО, сокращаем отрезки по оси $x$ с коэффициентом $k$ и получаем сжатый эллипс $x=\cos\alpha'\sqrt{1-v^2}, y=\sin\alpha'$, но углы теперь не соответствуют первоначальным. Поэтому берем формулы перерасчета углов из ИСО в ИСО' (1a, 1b) и обратно (2a, 2b):
$$\sin\alpha'= \frac{\sin\alpha\sqrt{1-v^2}}{\sqrt{1-(v\sin\alpha)^2}}\ \eqno (1a)$$
$$\cos\alpha'= \frac{\cos\alpha}{\sqrt{1-(v\sin\alpha)^2}}\ \eqno (1b)$$
$$\sin\alpha= \frac{\sin\alpha'}{\sqrt{1-(v\cos\alpha')^2}} \ \eqno (2a)$$
$$\cos\alpha= \frac{\cos\alpha'\sqrt{1-v^2}}{\sqrt{1-(v\cos\alpha')^2}}\ \eqno (2b)$$
и в формулы $x=\cos\alpha'\sqrt{1-v^2}, y=\sin\alpha'$ подставляем соответствующие выражения из формул (1a, 1b) и получаем $x=\frac{\cos\alpha\sqrt{1-v^2}}{\sqrt{1-(v\sin\alpha)^2}}$, $y=\frac{\sin\alpha\sqrt{1-v^2}}{\sqrt{1-(v\sin\alpha)^2}}$, т.е. такой же эллипс, но уже с правильными углами. Откуда получаем фомулу наблюдаемой длины отрезков ($l_0=\sqrt{x^2+y^2}$), расположенных под различными углами (как длина, так и угол расположения отрезка соответствуют наблюдаемым из покоящейся ИСО):
$$l= l'\sqrt{\frac{1-v^2}{1-(v\sin\alpha)^2}}\ \eqno (3)$$
из которой легко выводится формула для ускорений, представленная в стартовом посте $a=a'\sqrt{\frac{(1-v^2)^3}{1-(v\sin\alpha)^2}}$. Хотя, помнится, тогда выводил ее зачем-то с помощью ПЛ.

 Профиль  
                  
 
 Re: Скорость и инерция.
Сообщение03.06.2014, 20:27 
Заслуженный участник
Аватара пользователя


28/09/06
10851
С.Мальцев в сообщении #868913 писал(а):
epros в сообщении #863452 писал(а):
Лоренц верил в существование выделенной СО, однако в итоге так и не смог предложить способа её обнаружить.
Может быть, у Лоренца тогда всего лишь не было компьютера?
Интересно, каким образом компьютер может помочь обнаружить выделенную СО?

С.Мальцев в сообщении #868913 писал(а):
epros в сообщении #863452 писал(а):
Так что науке с помощью Эйнштейна пришлось научиться обходиться без выделенной СО.
А как Вам такой вариант – наука, возможно, больше потеряла чем приобрела, научившись обходиться без идей Лоренца и Пуанкаре? Разумеется, идей о сути релятивистской физики.
Когда придумаете способ обнаружить трёх китов, на которых стоит Земля, тогда посмотрим, что мы потеряли. А пока что без относительности никак.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 109 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 8  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group